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Individualised antibiotic dosing for patients who are 
critically ill: challenges and potential solutions
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Infections in critically ill patients are associated with persistently poor clinical outcomes. These patients have severely 
altered and variable antibiotic pharmacokinetics and are infected by less susceptible pathogens. Antibiotic dosing that 
does not account for these features is likely to result in suboptimum outcomes. In this Review, we explore the challenges 
related to patients and pathogens that contribute to inadequate antibiotic dosing and discuss how to implement a process 
for individualised antibiotic therapy that increases the accuracy of dosing and optimises care for critically ill patients. To 
improve antibiotic dosing, any physiological changes in patients that could alter antibiotic concentrations should fi rst be 
established; such changes include altered fl uid status, changes in serum albumin concentrations and renal and hepatic 
function, and microvascular failure. Second, antibiotic susceptibility of pathogens should be confi rmed with 
microbiological techniques. Data for bacterial susceptibility could then be combined with measured data for antibiotic 
concentrations (when available) in clinical dosing software, which uses pharmacokinetic/pharmacodynamic derived 
models from critically ill patients to predict accurately the dosing needs for individual patients. Individualisation of 
dosing could optimise antibiotic exposure and maximise eff ectiveness.

Introduction
Patients in intensive care units diff er considerably from 
those in general ward environments and have sub-
stantially higher mortality rates. These patients are 
usually critically ill and have a high level of sickness 
severity that is associated with profound patho-
physiological changes requiring aggressive medical 
interventions.1,2 Health-care providers are treating a 
growing number of critically ill patients, but clinical 
outcomes for many subgroups of patients are not 
improving substantially.3 In particular, critically ill 
patients with sepsis, septic shock, or acute kidney injury, 
are a substantial challenge to infectious diseases 
physicians, critical care physicians, nephrologists, and 
clinical pharmacists and pharmacologists.

In studies of sepsis and septic shock, interventions that 
optimised antibiotic therapy improved clinical outcomes 
the most.4–9 Early and appropriate antibiotic administration 
reduces mortality rates,6–8 but less information is available 
about the eff ect of appropriate dose regimens on clinical 
outcome.10 Although robust data are available for exposure 
eff ect relations between antibiotics and bacterial killing in 
vitro and in animals,11,12 the eff ect of antibiotic exposure on 
mortality has not been defi ned as precisely, although, 
some studies of these relations, mostly observational or 
retrospective in nature, are available.

Results from a randomised controlled trial with amino-
glycosides by van Lent-Evers and colleagues13 showed that 
a dedicated therapeutic drug-monitoring intervention 
(also described as therapeutic drug management) in a 
general patient cohort in one hospital signifi cantly 
reduced their length of stay (mean 20·3 days [SD 1·4]), 
compared with the length of stay for patients who did not 
have therapeutic drug monitoring (26·3 [2·9]; p=0·045).13 
Studies of quinolones,10,14,15 β lactams,10,16–19 glycopeptides,20,21 

and linezolid22 all have results from at least retrospective 
cohort analyses that show advantages in terms of clinical 
cure, mortality, or both, associated with achievement of 
target pharma cokinetic/pharma codynamic indices. The 
major chal lenge for clinicians is to ensure that dosing 
achieves these pharma cokinetic/pharmacodynamic 
targets in all patients.

Information about eff ective antibiotic dosing 
specifi cally for critically ill patients is not usually included 
in treatment guidelines—product information for the 
antibiotic usually guides the choice of dose for such 
patients. However, product information is based on dose-
fi nding studies in patients who are not critically ill, and 
the results are then extrapolated to critically ill patients, 
which might not be accurate for this population. Many 
critically ill patients have severely altered pharmacokinetic 
characteristics, which might reduce the likelihood that 
they will achieve the pharmacokinetic/pharmacodynamic 
targets that are associated with improved likelihood of 
positive clinical outcomes.23,24 Even general dosing 
guidelines for patients in intensive care units might not 
be a satisfactory solution because critically ill patients 
have substantial pharmac okinetic variability. Increased  
pharmacokinetic variability reduces the ability to predict 
therapeutic doses of antibiotic for individual patients, 
which could potentially worsen outcomes for patients.

After many years of dosing antibiotics in critically ill 
patients with a “one dose fi ts all” strategy there is a strong 
rationale to move to an individualised approach to dosing. 
This change is further supported by the problem of 
reduced antibiotic development, the need to make better 
use of currently available antibiotics, and the growing 
problem of antibiotic resistance.

In this Review, we describe the challenges of 
changes in pharmacokinetic characteristics caused by 
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patho physiological changes often seen in critically ill 
patients, and the challenges of the reduced susceptibility 
to antibiotics of bacterial organisms that is frequently 
encountered in intensive care. Either pharmacokinetics 
or pharmacodynamics, or both, aff ect the pharma-
cokinetic/pharmacodynamic ratio, and in turn, the 
magnitude of the pharmacokinetic/pharma codynamic 
target. Therefore, we considered solutions to these 
challenges in the form of individualised dosing 
strategies, supported by diff erent bedside dosing 
techniques based on software packages.

Challenge 1: eff ect of critical illness on antibiotic 
pharmacokinetics
Overview
Dysfunction of one or many organ systems occurs in 
critical illness and might substantially change antibiotic 
concentrations from those seen in patients who are not 
critically ill (fi gure). Without rational dose adjustment, 
these changes in drug concentrations can predispose  
patients to clinical failure, emergence of antimicrobial 
resistance, or even toxic eff ects from the drug. Therefore 
we fi rst review the pharmacokinetic eff ects caused by 
dysfunction of the cardiovascular, renal, pulmonary, and 
hepatic systems.

Cardiovascular system
Critically ill patients frequently have systemic infl am-
matory response syndrome caused by pathological 
changes that are either infectious or non-infectious.25 A 
major consequence of systemic infl ammatory response 
syndrome, particularly in patients with severe sepsis and 
septic shock, is extreme fl uid extravasation into  
interstitial space from endothelial damage and capillary 
leakage. This extravasation, known as third spacing,25 
results in hypotension; in response clinicians give large 
volumes of resuscitation fl uids that might also distribute 
into interstitial fl uid and thereby substantially increase 
interstitial volume. For hydrophilic antibiotics, a rise in 
interstitial volume might lead to a large increase in 

volume of distribution.26 By contrast, lipophilic antibiotics 
(eg, fl uoroquinolones and macrolides) have an inherently 
larger volume of distribution that is often not greatly 
aff ected by such fl uid movements or administration.27

Volume of distribution for hydrophilic antibiotics such 
as aminoglycosides,28,29 β lactams,26,30 glycopeptides,31 and 
linezolid32 can be up to two times greater in critically ill 
patients, than in patients who are not critically ill. 

Hypoalbuminaemia, defi ned as a serum albumin con-
centration less than 25 g/L, is a common but frequently 
neglected disorder in intensive care units (incidence 
40–50%33). Ulldemolins and colleagues34 have reviewed 
hypoalbuminaemia in detail and concluded that its eff ect 
on antibiotic pharmacokinetic characteristics in critically 
ill patients might be clinically important. Reduced 
concentrations of albumin could raise the unbound 
fraction of protein-bound drugs such as antibiotics.35 
Unbound fractions of antibiotics are available not only for 
elimination, but also for distribution. For antibiotics that 
are moderately to highly-protein bound (eg, ceftriaxone,36 
fl ucloxacillin,37 ertapenem,38,39 and daptomycin40) the 
volume of distribution rises by up to 100% in critically ill 
patients with hypoalbuminaemia. Fluid shifts and altered 
protein-binding, both often seen in mechanically 
ventilated patients, raise volume of distribution. An 
increased volume of distribution might reduce the peak 
concentration of drugs, which might in turn reduce the 
eff ectiveness of antibiotics that are concentration-
dependent (eg, aminoglycosides). These drugs need a 
high ratio of maximum concentration of unbound 
antibiotic to minimum inhibitory concentration and a 
high ratio of area under the concentration–time curve to 
mini mum inhibitory concentration for maximum 
bacterial killing.41–43 However, for a drug that is highly 
protein-bound (eg, daptomycin), hypoalbuminaemia will 
probably lead to a high free fraction of antibiotic in the 
early part of the dosing interval, which might result in 
advantageously high unbound concentrations. By 
contrast, for time-dependent β lactam antibiotics, changes 
in volume of distribution and protein binding can lead to 
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Figure: The range of altered pathophysiology in patients with critical illness, and its eff ects on drug concentrations
RRT=renal replacement therapy. ECMO=extracorporeal membrane oxygenation.
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low unbound concentrations later in the dosing interval in 
critically ill patients. The concentration of unbound 
antibiotic in patients who are critically ill could fall to 
subtherapeutic concentrations and put patients at risk of 
treatment failure.35,36

Importantly, increased severity of illness is associated 
with increased volume of distribution, so the most 
critically ill patients will probably have the least amount 
of antibiotic exposure if standard dosing is used, at 
least in the fi rst days of treatment.29 With recovery from 
infection, volume of distribution returns to normal 
and, for longer courses of therapy, dose modifi cations 
throughout treatment are often needed. For all 
antibiotic classes, which include concentration-
dependent anti biotics, an increased volume of 
distribution might delay the time taken to reach 
therapeutic concentrations.

Antibiotics need to reach eff ective concentrations in 
the interstitial fl uid of tissues, because this is the site of 
most infections.44 However, severe infections can cause 
vascular dysfunctions such as microvascular failure, 
which can impair drug delivery into body tissues.45 
Several studies report impaired tissue penetration for 
various antibiotics in patients with severe infection. 
Antibiotics in these studies included cefpirome,46 
fosfomycin,47 piperacillin,45,48 and levofl oxacin,49 and 
subtherapeutic concentrations in tissue for all these 
antibiotics are common in the early phase of treatment, 
particularly in patients with septic shock who are also 
receiving vasopressors.45 Therefore, at least for the 
antibiotic classes above, plasma concentrations might be 
an imprecise surrogate for tissue concentrations.

Renal system
Many widely used antibiotics in critically ill patients are 
cleared renally, and therefore their concentrations will be 
aff ected by changes in renal function. Although standard 
practice is to reduce antibiotic doses in the presence of 
acute kidney injury to avoid toxic eff ects, some critically ill 
patients can develop augmented renal clearance where 
glomerular fi ltration is increased in some patients. 
Augmented renal clearance, defi ned as a creatinine 
clearance of at least 130 mL/min, is a potential reason for 
underdosing, and thus some critically ill patients with 
renal impairment might actually need more intensive 
regimens of antibiotics.

Augmented renal clearance is driven by patho-
physiological responses to infection and treatment 
interventions (eg, fl uid resuscitation and use of vaso-
pressors) that are also associated with an early increase in 
cardiac output and enhanced blood fl ow to major organs.50  
Increased perfusion to the kidneys enhances drug delivery 
and therefore substantially raises glomerular fi ltration 
and clearance of renally cleared solutes, including some 
antibiotics, such as amino glycosides, β lactams, and 
glycopeptides.1,51,52 Augmented renal clearance is frequently 
seen in critically ill patients with normal serum creatinine 

concentrations, and typically happens in younger men 
(aged less than 55 years) with trauma, sepsis, burns, 
haematological malignant disease, or pancreatitis.53  In an 
investigation by Udy and colleagues54 up to 82% of patients 
with augmented renal clearance did not achieve thera-
peutic antibiotic concentrations with standard doses. 

Any reduction in kidney perfusion, including micro-
circulatory failure, could lead to acute kidney injury and 
reduced clearance of renally eliminated antibiotics. Acute 
kidney injury is identifi ed by raised serum creatinine 
concentrations or a reduction in urine output55 and 
necessitates an appropriate decrease in antibiotic dose to 
ensure therapeutic but non-toxic exposure. However, 
large dose reductions are not needed in the presence of 
acute kidney injury for drugs with a wide therapeutic 
index, cleared by several routes, and for which the 
proportion of clearance through the non-renal route is 
moderate to high (eg, ceftriaxone, fl ucloxacillin, and 
ciprofl oxacin have both hepatic and renal clearance 
pathways).

If severe acute kidney injury occurs, renal replacement 
therapy could be prescribed for clearance of metabolic 
waste products or fl uid removal. This therapy could 
consist of continuous renal replacement, or intermittent 
haemodialysis, or a hybrid form of both, such as 
sustained low-effi  ciency dialysis. Continuous renal 
replacement therapy is the most usual form used in 
critically ill patients, although hybrid forms are becoming 
more widely used. Important principles and factors of 
antibiotic dosing during renal replacement therapy have 
been discussed in detail in other papers,56,57 but in 
general, drugs with high volumes of distribution (more 
than 1 L/kg), lipophilic drugs, or drugs that are highly 
protein bound (more than 80%), or all three, are poorly 
eliminated by renal replacement therapy.56

Sepsis in the presence of renal replacement therapy is 
associated with a 50% increased probability of death, 
compared with renal replacement therapy  alone.58 The 
increased risk might be partly attributable to the 
diffi  culties in antibiotic dosing in patients with sepsis. 
Renal replacement therapy delivery does not have a 
standard approach, with the exception of intermittent 
haemodialysis, therefore antibiotic clearance varies 
substantially with method and setting. Some reports 
have emphasised the challenges for dosing with 
vancomycin, ciprofl oxacin, and β lactams, because 
10–50% of critically ill patients in these studies did not 
achieve target antibiotic concentrations.59,60 Dosing of 
antibiotics should ideally be individualised to the patient, 
method of renal replacement therapy, and setting.

Pulmonary system
Pneumonia is the most common infection in critically ill 
patients and an important cause of morbidity and mortality 
in patients in intensive care units (especially as a 
complication of mechanical ventilation).61 Provision of 
optimum antibiotic exposure for ventilated patients with 
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hospital-acquired pneumonia might be a challenge, 
especially when  various factors associated with the 
patients, pathological changes, and factors that can aff ect 
drug penetration to the site of infection are taken into 
account.62 Alveolar compartments such as epithelial lining 
fl uid are thought to be the closest measurable site where 
extracellular pathogens accumulate, and thus optimum 
antibiotic concentrations in the epithelial lining fl uid  
might determine therapeutic success.62 After systemic 
administration, an antibiotic fi rst crosses the alveolar 
capillary barrier, then reaches and acts within the epithelial 
lining fl uid. The passage across the alveolar capillary 
barrier could be aff ected by physicochemical (eg, 
lipophilicity) and pharmacokinetic characteristics (eg, level 
of protein-binding) of the antibiotic, and patient-specifi c 
characteristics (eg, infl ammation or chronic lung disease, 
or both). The degree of epithelial lining fl uid penetration 
for an antibiotic is characterised by the ratio of exposure in 
the epithelial lining fl uid to exposure in the plasma.

In the context of antibiotic physicochemistry, the more 
lipophilic antibiotics (eg, fl uoroquinolones, macrolides, 
and oxazolidinones) have an epithelial lining fl uid to 
plasma exposure ratio of at least 1.63,64 Such high exposure 
ratios are not always seen for hydrophilic antibiotics, 
although ratios might be underestimated because of 
technical errors.63,65,66 Although blood concentrations of 
antibiotics might seem therapeutic, epithelial lining fl uid 
concentrations might be insuffi  cient, especially with 
reduced bacterial susceptibility. Therefore, for hydrophilic 
drugs, some investigators suggest the use of higher doses 
in patients with severe nosocomial pneumonia.67,68 
Alternatively, use of diff erent admini stration approaches 
such as extended or continuous infusion of β lactam 
antibiotics,63,65 or administration via nebulisation,69 could 
be used to raise antibiotic con centrations in epithelial 
lining fl uid.

Hepatic system
In severe sepsis and septic shock, hepatic dysfunction 
could reduce drug metabolism and clearance.70,71 
However, few data are available to guide antibiotic dose 
adjustments in critically ill patients with liver 
dysfunction72.

Challenge 2: reduced bacterial susceptibility to 
antibiotics
Knowledge of the minimum inhibitory concentration of 
an antibiotic against a pathogen is essential to calculate 
the dose of antibiotic needed. The minimum inhibitory 
concentration is a critical factor of the pharmacokinetic/
pharmacodynamic relationship that defi nes how much 
antibiotic exposure is necessary to achieve a predefi ned 
pharmacokinetic/pharma codynamic target that is 
associated with maximum eff ectiveness.

Infections in intensive care units are often caused by 
pathogens with higher minimum inhibitory con-
centrations than in other clinical settings.73,74 For example, 

in a German study of predominantly Gram negative 
isolates75, the minimum inhibitory conc entrations of 
doripenem, meropenem, and imipenem needed to kill 
90% of the pathogen were all greater in critically ill 
patients than in patients who were not critically ill (four 
times greater with doripenem, and eight times greater 
with meropenem and imipenem).75 For an antibiotic, the 
pharmacokinetic exposure that is needed to achieve the 
pharmaco kinetic/pharma codynamic ratio threshold 
rises proportionally with increased minimum inhibitory 
concentration. For example, if vancomycin is given for 
health-care-associated pneumonia, a pharma cokinetic/
pharmacodynamic target ratio of area under the 
concentration–time curve from 0 h to 24 h to minimum 
inhibitory concentration of 400 might be used.76 In this 
case, if a meticillin resistant Staphylococcus aureus 
pathogen has a vancomycin minimum inhibitory con-
centration value of 0·5 mg/L, then an area under the 
curve (0–24 h) value of 200 mg/L/h is needed. This 
concentration could be achieved comfortably with a 
trough concentration of more than 10 mg/L. However, if 
the minimum inhibitory con centration is 2 mg/L, then 
an area under the curve (0–24 h) value of 800 mg/L/h is 
needed. This concentration would, in turn, need a trough 
concentration of more than 20–25 mg/L, which would 
substantially raise the risk of drug-related toxic eff ects. In 
the case of high minimum inhibitory concentrations, an 
alternative antibiotic or combination therapy might be 
needed.

This example shows some of the challenges that might 
prevent optimum dosing of antibiotics in the presence of 
bacteria with reduced susceptibility. Quantitative knowledge 
of antibiotic susceptibility will help to guide dosing needs 
in critically ill patients. Another diffi  culty is reduced 
bacterial susceptibility to widely used antibiotics, 
particularly in critically ill patients, and therefore regular 
surveillance is needed.77 Surveillance programmes 
should report minimum inhibitory concentrations from 
intensive care units separately from those on regular 
wards because diff erences in antibiotic susceptibility are 
often seen between the two.73,74,78,79 Most laboratories 
routinely report bacterial susceptibility to antibiotics with 
the classifi cations susceptible, intermediate-susceptible, 
or resistant, which are based on minimum inhibitory 
concentration breakpoints (ie, at which a bacterium is 
deemed either susceptible or resistant to the specifi c 
antibiotic being used). Although this approach is suitable 
for many clinical situations because it unambiguously 
delineates when an antibiotic should not be given, it 
might not be suitable for critically ill patients with altered 
pharmacokinetic and antibiotic sus ceptibilities close to 
the breakpoint of intermediate or resistant. In such 
patients, the relevant pharmacokinetic/pharma-
codynamic target might still not be achieved even if the 
bacterial organism’s breakpoint is classifi ed as 
susceptible for a particular antibiotic.80 Therefore, 
minimum inhibitory concentration data for a pathogen 
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in specifi c patients are essential to accurately calculate 
the pharmacokinetic exposure needed to achieve the 
necessary pharmacokinetic/pharmacodynamic targets in 
that patient—local microbiology laboratories could be 
engaged to obtain these data. 

Another important issue for treatment of infections in 
critically ill patients is that minimum inhibitory 
concentration breakpoints reported by groups such as 
the European Committee on Antimicrobial Susceptibility 
and Testing and the Clinical and Laboratory Standards 
Institute are frequently derived from antibiotic exposures 
in patients who are not critically ill. If the pharma-
cokinetics for an individual patient are profoundly 
changed, and the patient is infected by a pathogen with a 
minimum inhibitory concentration at or near the 
resistant breakpoint, then a standard fi xed regimen could 
increase the probability of underdosing.

In view of such inherent challenges for antibiotic 
dosing related to pathophysiology, pharmacokinetics, 
and reduced bacterial susceptibility, what can be done to 
possibly strengthen the probability of positive treatment 
outcomes with antibiotics for critically ill patients?

Possible solution: individualised antibiotic 
dosing for critically ill patients 
Approaches
Best possible outcomes for patients from treatment of 
infection are most likely when pharmacokinetic/
pharmacodynamic targets associated with maximum 
antibiotic activity are achieved. In-vitro and in-vivo mathe-
matical pharmacokinetic/pharmacodynamic models intro-
duced since the 1980s have enabled an accurate description 
of the targets that are associated with maxi mum antibiotic 
eff ect. Clinical analyses have attempted to support the 
results of these studies and have, for the most part, 
described pharmacokinetic/pharmacodynamic targets that 
do not diff er from targets noted in the pre clinical studies.81 
Various targets that have been described in preclinical and 
clinical studies could be therapeutic targets for optimised 
dosing in individual patients (table 1).

To increase the probability of achieving therapeutic 
targets for antibiotics given systemically, two main 
approaches could be used to adjust standard regimens: 
altered administration techniques such as once daily 
dosing or prolonged infusion, which are often based on 
reported studies of the specifi c dosing regimen, or dose 
adjustment guided by therapeutic drug monitoring, or 
both approaches together.

Improved  administration techniques
Many pharmacokinetic studies have applied dosing 
simulations to identify optimised regimens that can 
achieve pharmacokinetic/pharmacodynamic targets for 
infections caused by organisms with higher than normal 
minimum inhibitory concentrations, or for patients with 
altered pharmacokinetics. Such an approach to dosing is 
not individualised when used in a population, but it is a 

form of therapeutic adaptation designed to improve 
antibiotic eff ectiveness. Dosing based on pharma cokinetic/
pharmacodynamic models has changed the way aminoglycosides 
are prescribed clinically, from three times to once per day, 
and has improved the safety and eff ectiveness of these 
compounds.115 Because of this improvement, extended-
interval dosing for amino glycosides is widely regarded as 
the standard of antibiotic care.116

Several studies of β lactams have been reported, the 
results of which collectively suggest that infusion of 
β lactams should be extended in patients who are 
critically ill (either for 40–50% of the dosing interval [ie, 
3–4 h], or a continuous infusion), because this practice is 
more likely to achieve pharmacokinetic/pharma-
codynamic targets than standard bolus dosing.68,117–124 
Some studies investigated the clinical value of extended 
infusions in prospective randomised controlled trials. 
The results suggest that a continuous infusion of 
antibiotics is advantageous for critically ill patients with 
severe sepsis.125,126 Although some meta-analyses of these 
studies have not been able to quantify defi nitive 
advantages for either intermittent or extended infusions 
of β lactams, these studies have often not been stratifi ed 
for patients with altered pharmacokinetics or reduced 
susceptibility.126,127 For example, an investigation by 
Arnold and colleagues128 changed dosing of β lactams 
across an intensive care unit from intermittent infusion 
to extended infusion, but noted this approach was not 
clinically advantageous. This result was probably because 
of the high proportion of susceptible pathogens in that 
particular intensive care unit with low minimum 
inhibitory concentrations, which meant that standard 
infusions had already obtained requisite pharma-
cokinetic/pharmacodynamic ratio thresholds in most 
patients.128 Clinicians should fi nd out whether patients, 
pathogens, or both, might not respond to a standard 
fi xed regimen, because a diff erent approach to dosing for 
all patients might not be necessary or confer any 
therapeutic advantage. In a separate investigation by 
Lodise and colleagues,129 extended infusions of 
piperacillin–tazobactam for Pseudomonas aeruginosa 
infections were clinically eff ective in patients who were 
critically ill with very severe sickness.  

A few studies of vancomycin have compared 
continuous infusion versus intermittent dosing and the 
results have mostly shown equivalence between the two 
techniques.130 Results from one study only, by Rello and 
colleagues,131 have shown potential clinical outcome 
advantages for continuous versus intermittent infusion 
of vancomycin. The merit of continuous infusion for 
vancomycin is probably related to more consistent 
achievement of pharmacokinetic/pharmacodynamic 
targets,31 although the eff ect of continuous infusion of 
antibiotics on antibiotic resistance has not been 
addressed in these studies.

In general, a change in the dose, frequency, or method 
of administration of an antibiotic can be implemented 
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across an intensive care unit when minimum inhibitory 
concentration data are available to justify an empirical 
change.

Adjustment of antibiotic dose guided by therapeutic 
drug monitoring
Therapeutic drug monitoring is traditionally used to 
minimise toxic eff ects, but in critically ill patients it is 
also used to optimise dosing in the presence of severely 
changed pharmacokinetics.10,132 Therapeutic drug 
monitoring  relies on direct measurement of serum anti-
biotic concentrations with timely feedback to clinicians 
who then interpret results in the context of therapeutic 
ranges. Adequacy of a measured con centration can be 
interpreted by either direct com parison of one 
concentration value to a therapeutic target, or an 
estimation of antibiotic exposure with non-linear 
regression or Bayesian techniques. Doses could then be 
increased or decreased as predicted by the clinician or 
any dosing software used. 

The concentration of unbound drug in a blood sample 
is important for accurate interpretation of drug exposure, 
because only free drug is microbiologically active. 
Knowledge of free concentrations is most important for 
antibiotics that are highly bound in plasma.133 Likewise, 
concentration results should be made available in a 

timely manner so that rapid dose adjustments can be 
made. In view of the dynamic nature of pharmacokinetics 
in patients who are critically ill, long delays can result in 
inappropriate dose adjustment. For ideal therapeutic 
drug monitoring, the antibiotic minimum inhibitory 
concentration values for the organism and pharma-
cokinetic targets should be available too.

So far, various reports of therapeutic drug monitoring 
for antibiotics in patients who are critically ill include 
investigations of aminoglycosides,134 glycopeptides,135 
β lactams,10,19,136 linezolid,137 and quinolones.10 However, 
few studies have compared the clinical outcomes of 
therapeutic drug monitoring  versus outcomes without 
this intervention, and therefore prospective individualised 
therapy in patients who are critically ill should be 
rigorously assessed. 

Dosing nomograms for dose adjustment of antibiotics 
are widely used across many clinical specialties.138 These 
nomograms compare a measured concentration of 
prescribed antibiotic at a particular timepoint with a 
graph that shows the therapeutic range of concentrations 
at the same timepoint. The dose of antibiotic can then be 
increased or reduced as necessary to ensure the next 
measured concentration is in the therapeutic range. 
These nomograms are simple to use and are popular 
with clinicians. Nomograms for vancomycin and 

Preclinical studies Clinical studies 

Concentration-dependent

Aminoglycosides Maximum killing43

Resistance suppression87

AUC0–24/MIC 80–100
Cmax/MIC 10–30

Clinical cure82–86 

Microbiological cure
Cmax/MIC 8–10; AUC/MIC >70
··

Time-dependent

Carbapenems Maximum killing88

Resistance suppression90, 91

40% T>MIC

16 × MIC; Cmin/MIC >6·2
Clinical cure89

Microbiological cure17

75% T>MIC; Cmin/MIC 5
54% T>MIC

Cephalosporins Maximum killing11

Resistance suppression
60–70% T>MIC

··
Clinical cure92

Microbiological cure16,93

100% T>MIC

60–100% T>MIC; 95% T>4·3xMIC

Penicillins Maximum killing11

Resistance suppression94

40–50% T>MIC

40–50% T>MIC

Clinical cure
Microbiological cure95

··
40–50% T>MIC

Concentration-dependent and time-dependent

Fluoroquinolones Maximum killing11,96

Resistance suppression99,100,101

AUC0–24/MIC >30–100
AUC0–24/MIC >160; AUC0–24/MPC ≥22

Clinical cure15,86,96,97,98

Microbiological cure14,86,102

AUC0–24/MIC ≥125–250; Cmax/MIC ≥8
AUC0–24/MIC ≥34–125; Cmax/MIC ≥8

Vancomycin Maximum killing103

Resistance suppression104

AUC0–24/MIC 86–460
AUC0–24/MIC >200

Clinical cure20,21

Microbiological cure20

AUC0–24/MIC ≥400–450
AUC0–24/MIC ≥400

Linezolid Maximum killing
Resistance suppression

··
··

Clinical cure22

Microbiological cure22

AUC0–24/MIC ≥85; 85% T>MIC

AUC0–24/MIC 80–120; 85% T>MIC

Tigecycline Maximum killing105

Resistance suppression
50% T>MIC

··
Clinical cure106,107,108

Microbiological cure109,110

AUC0–24/MIC >12·8–17·9; f AUC0–24/MIC ≥0·9
AUC0–24/MIC 6·9–17·9

Daptomycin Maximum killing111,112

Resistance suppression104

AUC0–24/MIC 38–442
AUC0–24/MIC >200

Clinical cure
Microbiological cure

··
··

Colistin Maximum killing113,114

Resistance suppression
AUC0–24/MIC 7–23
··

Clinical cure
Microbiological cure

··
··

AUC0–24/MIC=ratio of area under the concentration time curve from 0 to 24 h to minimum inhibitory concentration. Cmax/MIC=ratio of maximum concentration of antibiotic 
in a dosing interval to minimum inhibitory concentration. T>MIC=percentage of dosing interval that the antibiotic concentration is maintained above the minimum inhibitory 
concentration. AUC0–24/MPC=ratio of the AUC0–24 to the concentration that prevents mutation. Cmin=minimum concentration of antibiotic in a dosing interval, f=free 
concentration or fraction of drug not bound to plasma proteins. *Where the index is reported as a range, data included might have been derived from diff erent infection 
models with diff erent bacteria. Specifi c data for the contributing values can be found in the associated references. Data for the various indices has been reported in diff erent 
studies according to total and free (unbound) concentrations of drug.

Table 1: Studies reporting pharmacokinetic/pharmacodynamic indices from preclinical and clinical assessments, by antibiotic class
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aminoglycosides are the most widely available138–140 
because these drugs have high toxicity thresholds (ie, 
low therapeutic index) and available assays, and they are 
often targets for therapeutic drug monitoring by 
pharmacists and physicians. A limitation of many 
nomograms, however, is that they are rarely designed 
with pharmacokinetic/pharmacodynamic targets from 
patients who are critically ill, and rely on clinicians’ 
experience to make appropriate dose adjustments in 
these circumstances.141

Application of non-linear regression analysis to a series 
of concentration values at diff erent timepoints can be 
used to calculate basic pharmacokinetic variables such as 
area under the curve, clearance, elimination rate con-
stant, maximum concentration in the dosing interval, and 
trough concentration. To calculate the dose of an 
antibiotic, the measured or calculated values for area 
under the concentration–time curve, maximum con-
centration of antibiotic in a dosing interval or trough 
concentrations, or both, can be compared against the 
pharmacokinetic/pharmacodynamic targets for the 
prescribed antibiotic, and the dose empirically increased 
or decreased as needed.

Population pharmacokinetic models have been 
developed for many antibiotics used in patients who are 

critically ill. A drawback of many of these models is that 
the increased pharmacokinetic variability in these 
patients is unlikely to be captured because the sample 
size used in many of these studies is usually too small 
(around ten to 20 patients).142,143 However, these population 
models are probably more accurate than a model derived 
from another group of patients.144 

Greatest accuracy of dose adaptation based on data for 
drug concentrations could be ensured with a stochastic 
control approach, to defi ne the timing and number of 
samples that should be taken from a patient and then used 
in dose prediction.145 This approach is particularly useful for 
drugs with high pharmacokinetic variability such as 
voriconazole.72 The accuracy of dose prediction improves 
with more data for antibiotic concentrations across 
diff erent dosing intervals.72

In Bayesian dose adaptation, the dose of a drug is 
adjusted to ensure an individual patient’s exposure meets 
pharmacokinetic/pharmacodynamic targets. Infor mation 
about a specifi c patient’s serum drug con centrations and 
a population pharmacokinetic model from the relevant 
population are included. The model contains a series of 
mathematical equations that include parameter estimates 
and their distribution for clearance, and volume of 
distribution.

BestDose v1·0 ID-ODS MWPharm DoseMe TCI Works First-dose WinAUIC CADDy 
Program v4.e

Method of 
pharmacokinetic 
assessment

Bayesian non-
parametric approach

Bayesian parametric 
approach

Bayesian parametric 
approach

Bayesian 
parametric 
approach

Bayesian 
parametric 
approach

Population 
parametric 
approach

Non-linear 
regression

Non-linear 
regression

Adaptive feedback? Yes Yes Yes Yes Yes No No No

Web, server, or 
terminal based?

Terminal Terminal and server Terminal and server Terminal 
and server

Terminal and server Web Terminal Web or server

Compatibility Windows Mac, Windows, Linux, 
Android, iOS

Windows Mac, Windows, 
Linux, Android, 
IOS

Mac, Windows Mac, Windows, 
Linux, 
Android, iOS

Windows Mac, Windows, 
Linux, Android, 
IOS

Smart phone 
application?

No Yes No Yes No Yes No No

Patient covariates 
in dose predictions?

Yes Yes Yes Yes Yes Yes Yes Yes

Output from 
program?

Doses and 
pharmacokinetic 
parameter estimates

Dosing regimens, 
pharmacokinetic 
parameter estimates, 
and PTAs

Doses and 
pharmacokinetic 
parameter estimates

Doses and 
pharmacokinetic 
parameter 
estimates

Doses and 
pharmacokinetic 
parameter 
estimates

Doses Pharmacokinetic 
parameter estimates

Doses

IT support available 
within 24 h?*

Yes Yes No Yes Yes No No Yes

Capacity for ICU 
and non-ICU dosing?

Yes Yes Yes Yes Yes No No No

Further information http://www.lapk.org http://www.optimum-
dosing-strategies.org 

http://www.
mediware.cz/index_
en.html 

www.doseme.
com.au 

www.tciworks.info http://www.
fi rstdose.org/ 

Contact the 
developers 
(Dr Jerome Schentag: 
schentag@buff alo.
edu)

www.
jjpreisenberger.
de 

Cost Current version is free. Free €1250 per license Dependent on 
requirements

Free Free Free Free

ICU=intensive care unit. IT=information technology. PTA=probability of target attainment. ID-ODS=Individually Designed Optimum Dosing Strategies. WinAUIC=Windows Antibiotic Utilisation Information and 
Consultation. *Response time often depends on the severity of the problem for the user (for non-urgent issues, responses might exceed 24 h).

Table 2: Characteristics of various antibiotic dosing programs
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A critically ill patient could receive the fi rst dose at the 
clinician’s discretion, preferably with a strategy that is 
likely to achieve pharmacokinetic and pharmacodynamic 
targets (eg, vancomycin loading dose31 or extended 
infusion β lactam).68,117–124 During the fi rst or subsequent 
dose intervals, one or more blood samples could be taken 
to estimate the patient’s pharmacokinetic variables for 
the antibiotic. Samples could then be assayed in a timely 
manner (eg, within 6 h) and, if a software package has 
been chosen to help to calculate antibiotic dosing, then 
the dosing history, drug concentrations, pathogen 
minimum inhibitory concentration, and necessary data  
for the patient (eg, weight or creatinine clearance) could 
be entered. The software could then combine the recorded 
data for the patient plus the population pharmacokinetic 
model to estimate the Bayesian posterior pharmacokinetic 
parameter values. The appropriate dose that achieves the 
pharmacokinetic/pharmacodynamic targets needed for 
that particular patient could then be calculated and used 
in the next dosing interval.

Many programs are available that apply diff erent 
approaches to calculate individualised antibiotic doses 
for patients. Table 2 shows a summary of various 
programs, and others are identifi ed by Fuchs and 
colleagues.146 Importantly, not all programs contain all 
relevant antibiotics, although the developers of most 
state that additional pharmacokinetic models for 
antibiotics can be included. To ensure that robust 
antibiotic dosing at the bedside is possible, many of these 
programs have, or will have, electronic medical record 
interfaces and smart-phone applications that can be used 
at the patient’s bedside.

On the basis of best available evidence, we suggest the 
following process for dose individualisation in a critically 
ill patient: (1) diagnose the infection and select an 
antibiotic; (2) establish the patient’s physiological 
characteristics (eg, weight, sex, creatinine clearance, 
serum albumin concentration, fl uid overload status, 
presence of extracorporeal circuits); (3) estimate the fi rst 
dose of antibiotic on the basis of the patient’s characteristics 
and local baseline data for bacterial susceptibility in the 
intensive care unit, possibly with the appropriate software; 
(4) give the dose to the patient in a timely manner after 
diagnosis; and (5) take blood samples at predefi ned 
timepoints and assess them in a timely manner. 

The clinician could then enter the concentration–time 
data from the blood samples and patient’s covariate data 
into software that personalises a dosing regimen for the 
patient to achieve an evidence-based pharmacokinetic  and 
pharmacodynamic target. When available, susceptibility 
data for a specifi c pathogen should be in corporated into 
the dose estimation process.

Conclusions
Patients who are critically ill have substantially varied 
pharmacokinetics compared with patients who are not 
critically ill. Additionally, patients who are critically ill 

are more likely to be infected by bacteria that are less 
susceptible to antibiotic treatment. Traditional strategies 
for dosing with antibiotics in patients who are critically 
ill are unlikely to consistently achieve the pharma-
cokinetic/pharmacodynamic targets associated with 
maximum antibiotic activity. This situation raises the 
risk of clinical failure, or development of resistance, or 
both, for a patient who is critically ill. Optimisation of 
antibiotic dosing in the intensive care unit therefore 
needs an individualised approach for the patient that 
takes into account the minimum inhibitory con cen-
tration of an antibiotic for the infecting pathogen, and 
selects a dosing regimen that is likely to obtain the 
requisite pharmacokinetic/pharmacodynamic ratio 
predictive of success. Proactive therapeutic management 
for antibiotics other than vancomycin and amino-
glycosides is possible, but should be escalated to the next 
level and made available to all hospitals. Individualised 
antibiotic concentrations for patients, combined with 
software programs that calculate individual doses, could 
increase the accuracy of antibiotic dosing, and the 
likelihood that pharmacokinetic and pharmacodynamic 
targets and favourable clinical outcomes can be achieved 
in all patients.
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Search strategy and selection criteria

We searched for English language articles in PubMed (1966 
to Feb 2014), Embase (1966 to Feb 2014), the Cochrane 
Controlled Trial Register, and references from relevant 
articles, with the key words “antibacterial”, “Bayesian”, 
“intensive care unit”, “pharmacodynamics”, and 
“pharmacokinetics”. Search terms related to antibiotic 
pharmacokinetics and pharmacodynamics in patients who 
were critically ill, and dosing software, were also included.
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