
Malaria has had a profound effect on human lives for 
thousands of years and remains one of the most seri-
ous, life-threatening infectious diseases1–3. The disease 
is caused by protozoan pathogens of the Plasmodium 
spp.; Plasmodium falciparum and Plasmodium vivax, 
for which humans are the exclusive mammalian hosts, 
are the most common species and are responsible for 
the largest public health burden. Malaria is transmit-
ted by the bite of Plasmodium spp.-infected female 
mosquitoes of the Anopheles genus1–3. During a blood 
meal, infected mosquitoes inject — along with their 
anticoagulating saliva — sporozoites, which are the 
infective, motile stage of Plasmodium spp. Sporozoites 
journey through the skin to the lymphatics and into 
hepatocytes in the liver (FIG. 1). Inside the hepatocyte, 
a single sporozoite can generate tens of thousands of 
merozoites (the stage that results from multiple asex-
ual fissions (schizogony) of a sporozoite within the 
body of the host), which are released into the blood-
stream where they enter red blood cells to replicate 
(erythrocytic schizogony). A fraction of merozoites 
(those that are sexually committed) also differentiate 
and mature into male and female gametocytes, which 
is the stage that infects the mosquito host when it 
takes a blood meal4,5. The onset of clinical symptoms 
generally occurs 7–10 days after the initial mosquito 

bite. P. vivax and Plasmodium ovale also have dormant 
forms, called hypnozoites, which can emerge from the 
liver years after the initial infection6, leading to relapse 
if not treated properly.

The consequences of Plasmodium spp. infection 
vary in severity depending on the species and on host 
factors, including the level of host immunity, which is 
linked to the past extent of parasite exposure7,8. Malaria 
is usually classified as asymptomatic, uncomplicated or 
severe (complicated)9 (BOX 1). Typical initial symptoms 
are low-grade fever, shaking chills, muscle aches and, 
in children, digestive symptoms. These symptoms can 
present suddenly (paroxysms), and then progress to 
drenching sweats, high fever and exhaustion. Malaria 
paroxysmal symptoms manifest after the haemolysis 
of Plasmodium spp.-invaded red blood cells. Severe 
malaria is often fatal, and presents with severe anae-
mia and various manifestations of multi-organ dam-
age, which can include cerebral malaria8 (BOX  1). 
Severe malaria complications are due to microvascular 
obstruction caused by the presence of red blood cell-
stage parasites in capillaries8,10,11. This Primer focuses 
on our understanding of malaria pathology in the 
context of parasite and vector biology, progress in 
diagnostics and new treatments (drugs and vaccines), 
 chemoprotection and chemoprevention.
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Abstract | Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium 
parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of 
Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens 
nearly half of the world’s population and led to hundreds of thousands of deaths in 2015, 
predominantly among children in Africa. Malaria is managed through a combination of vector 
control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and 
drugs for both treatment and prevention. The widespread use of artemisinin-based combination 
therapies has contributed to substantial declines in the number of malaria-related deaths; however, 
the emergence of drug resistance threatens to reverse this progress. Advances in our understanding 
of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, 
drugs and insecticides. Several new combination therapies are in clinical development that have 
efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to 
improve compliance. This ambitious programme to eliminate malaria also includes new approaches 
that could yield malaria vaccines or novel vector control strategies. However, despite these 
achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is 
to be achieved.
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Epidemiology
The vector
Human malaria parasites are transmitted exclusively by 
~40 species of the mosquito genus Anopheles12. During 
Anopheles spp. mating, males transfer high levels of the 
steroid hormone 20-hydroxyecdysone to the females, 
and the presence of this hormone has been associated 
with favourable conditions for Plasmodium spp. devel-
opment13. Malaria-competent Anopheles spp. are abun-
dant and distributed all over the globe, including the 
Arctic. However, the efficacy of malaria transmission 
depends on the vector species and, therefore, varies 
considerably worldwide; for example, in tropical Africa, 
Anopheles gambiae is a major and highly efficient vector14. 
The first WHO Global Malaria Eradication Programme 
(1955–1972) involved, in addition to chloroquine- based 
treatments, large-scale insecticide campaigns using 
dichlorodiphenyltrichloroethane (DDT)15. This strategy 
was quite effective against P. falciparum; although the 
mosquitoes gradually repopulated DDT-treated areas 
(because they developed resistance to the insecticide, 
and the use of DDT itself waned owing to its costs and 
increasing environmental concerns), these areas have 
often remained malaria-free and in some cases still are. 
More-selective vector control approaches, such as the 
use of insecticide-treated bed nets and indoor residual 
spraying, have eliminated malaria from several areas (see 
Diagnosis, screening and prevention, below). However, 
mosquito resistance to insecticides is a growing concern. 
Of the 78 countries that monitor mosquito resistance to 
insecticides, 60 have reported resistance to one or more 
insecticides since 2010 (REF. 16).

The parasite
Plasmodium spp. are single-celled eukaryotic organ-
isms17–19 that belong to the phylum Apicomplexa, which 
is named for the apical complex that is involved in host 
cell invasion. A discussion of the parasite genome and the 
genetic approaches used to study parasite biology is pro-
vided in BOX 2. Of the five human-infective Plasmodium 
spp., P. falciparum causes the bulk of malaria-associated 
morbidity and mortality in sub-Saharan Africa, with 
mortality peaking in the late 1990s at over 1 million 
deaths annually in the continent20 (FIG. 2). P. falciparum 
is associated with severe malaria and complications 
in pregnancy (BOX 3); most malaria-related deaths are 
associated with this species, which kills ~1,200 African 
children <5 years of age each day21. However, P. falci
parum is also found in malarious tropical areas around 

the world. P. vivax is found in malarious tropical and 
temperate areas, primarily Southeast Asia, Ethopia  
and South America, and generally accounts for the 
majority of malaria cases in Central and South America 
and in temperate climates. This distribution can be 
explained by the fact that P. vivax can survive in climat-
ically unfavourable regions and can stay dormant in a 
hypnozoite form in its human host’s liver for many years. 
Furthermore, many Africans are negative for the Duffy 
antigen (also known as atypical chemokine receptor 1) 
on the surface of red blood cells, and this genotype pro-
vides protection from P. vivax malaria, as it makes it more 
difficult for P. vivax to bind to and penetrate red blood 
cells22. However, some cases of P. vivax transmission to 
Duffy antigen-negative individuals have been reported, 
which suggests that alternative mechanisms of invasion 
might be present in some strains, and this might portend 
the escalation of P. vivax malaria to Africa23,24. P. ovale is 
also found in Africa and Asia, but is especially prevalent 
in West Africa. Two sympatric species exist: P.o. curtisi 
and P.o. wallikeri25. Plasmodium malariae — which can 
be found worldwide but is especially prevalent in West 
Africa — causes the mildest infections, although it has 
been associated with splenomegaly or renal damage upon 
chronic infection. Plasmodium knowlesi — which was ini-
tially considered as a parasite of non-human primates — 
can not only cause malaria in humans but can also lead 
to severe and even fatal malaria complications26,27. The 
reasons for the emergence of P. knowlesi in humans are 
not yet fully understood but are possibly linked to land-
use changes that have brought humans into close con-
tact with P. knowlesi-infected mosquitoes28. Regardless, 
the possible recent emergence of a form of malaria as a 
zoonosis poses obvious complications for elimination. 
In addition, co-infections between P. falciparum and 
P. vivax have been well-documented and have been 
reported to occur in up to 10–30% of patients living 
in areas where both parasites are prevalent29,30. Mixed 
infections can also include other species such as P. ovale 
and P. malariae, and newer diagnostic methods are being 
developed that will enable better assessment of the fre-
quency and distribution of these types of co-infection 
(for example, REF. 31).

The disease
Malaria remains a major burden to people residing in 
resource-limited areas in Africa, Asia and Central and 
South America (FIG. 2). An estimated 214 million cases 
of malaria occurred in 2015 (REF. 16). Africa bears the 
brunt of the burden, with 88% of the cases, followed by 
Southeast Asia (10%), the eastern Mediterranean region 
(2%) and Central and South America (<1%). Malaria 
continues to kill over three-times as many people as 
all armed conflicts; in 2015, there were an estimated 
438,000 (REF. 16) — 631,000 (REF. 20) deaths resulting 
from malaria, compared with an estimated 167,000 
deaths due to armed conflicts32,33. In areas of contin-
uous transmission of malaria, children <5 years of age 
and the fetuses of infected pregnant women experience 
the most morbidity and mortality from the disease. 
Children >6 months of age are particularly susceptible 
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because they have lost their maternal antibodies but 
have not yet developed protective immunity. In fact, 
adults and children >5 years of age who live in regions 
of year-round P. falciparum transmission develop a 
partial protective immunity owing to repeated expo-
sure to the parasite. There is evidence that immunity 
against P. vivax is acquired more quickly34. Individuals 
with low protective immunity against P. falciparum are 

particularly vulnerable to severe malaria. Severe malaria 
occurs in only 1% of infections in African children and 
is more common in patients who lack strong immune 
protection (for example, individuals who live in low- 
transmission settings, children <5 years of age and naive 
hosts). Severe malaria is deadly in 10% of children and 
20% of adults7. Pregnant women are more susceptible 
to Plasmodium spp. infection because the placenta 
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Figure 1 | The Plasmodium spp. life cycle. The mosquito vector transmits the Plasmodium spp. parasite in the sporozoite 
stage to the host during a blood meal. Within 30–60 minutes, sporozoites invade liver cells, where they replicate and divide 
as merozoites. The infected liver cell ruptures, releasing the merozoites into the bloodstream, where they invade red blood 
cells and begin the asexual reproductive stage, which is the symptomatic stage of the disease. Symptoms develop 4–8 days 
after the initial red blood cell invasion. The replication cycle of the merozoites within the red blood cells lasts 36–72 hours 
(from red blood cell invasion to haemolysis). Thus, in synchronous infections (infections that originate from a single 
infectious bite), fever occurs every 36–72 hours, when the infected red blood cells lyse and release endotoxins en masse70–72. 
Plasmodium vivax and Plasmodium ovale can also enter a dormant state in the liver, the hypnozoite. Merozoites released 
from red blood cells can invade other red blood cells and continue to replicate, or in some cases, they differentiate into male 
or female gametocytes4,5. The transcription factor AP2-G (not shown) has been shown to regulate the commitment to 
gametocytogenesis. Gametocytes concentrate in skin capillaries and are then taken up by the mosquito vector in another 
blood meal. In the gut of the mosquito, each male gametocyte produces eight microgametes after three rounds of mitosis; 
the female gametocyte matures into a macrogamete. Male microgametes are motile forms with flagellae and seek the 
female macrogamete. The male and female gametocytes fuse, forming a diploid zygote, which elongates into an ookinete; 
this motile form exits from the lumen of the gut across the epithelium254 as an oocyst. Oocysts undergo cycles of replication 
and form sporozoites, which move from the abdomen of the mosquito to the salivary glands. Thus, 7–10 days after the 
mosquito feeds on blood containing gametocytes, it may be ‘armed’ and able to infect another human with Plasmodium 
spp. with her bite. Drugs that prevent Plasmodium spp. invasion or proliferation in the liver have prophylactic activity, drugs 
that block the red blood cell stage are required for the treatment of the symptomatic phase of the disease, and compounds 
that inhibit the formation of gametocytes or their development in the mosquito (including drugs that kill mosquitoes 
feeding on blood) are transmission-blocking agents. *Merozoite invasion of red blood cells can be delayed by months or 
years in case of hypnozoites. ‡The number of days until symptoms are evident. §The duration of gametogenesis differs by 
species. ||The maturation of sporozoites in the gut of the mosquito is highly temperature- dependent. Adapted with 
permission from REF. 255, Macmillan Publishers Ltd.
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itself selects for the emergence of parasites that express 
receptors that recognize the placental vasculature;  
these receptors are antigens to which pregnant women 
have not yet become partially immune7 (BOX 3). This 
vulnerability increases the risk of miscarriage; parasit-
aemia in the placenta can have adverse effects on the 
fetus35–37 (BOX 3).

Co-infection of Plasmodium spp. with other path-
ogens — including HIV, Mycobacterium tuberculosis 
and helminths — is common. HIV-infected adults are 
at an increased risk of severe malaria and death38. The 
overall prevalence of helminth infection is very high 
(>50% of the population) in malaria-endemic regions 
and is associated with increased malaria parasitaemia39. 
Surprisingly, naturally occurring iron deficiency and 
anaemia protect against severe malaria, which was an 
unexpected finding40, as numerous clinical studies 
have aimed to fortify children and prevent anaemia by 
 distributing iron supplements41.

From 2000 to 2015, the incidence of malaria fell by 
37% and the malaria mortality rate fell by 60% globally16. 
The WHO attributes much of this reduction of malaria- 
associated morbidity and mortality to the scale-up of 
three interventions: insecticide-treated bed nets (69% 
of the reduction), artemisinin-based combination 
therapies (ACTs; 21%) and indoor residual insecticide 
spraying (10%)16 (see Diagnosis, screening and preven-
tion, below). Until ACT was introduced, progress in 
malaria control in most malarious countries was threat-
ened or reversed by the nearly worldwide emergence of 
chloroquine- resistant and sulfadoxine–pyrimethamine- 
resistant P. falciparum strains and, more recently, of 
other resistant Plasmodium spp. ACT has become the 
antimalarial medicine of choice in most malarious areas, 
and demonstrates rapid parasite clearance, superior effi-
cacy (compared with other clinically approved drugs) 
and >98% cure rates (typically defined as the percent-
age of patients who remain malaria-free for 28 days; 
re-infection events do not count as a recurrence). ACTs 
achieve these results even in strains that are resistant to 
older antimalarials, effectively turning the tide against 
antimalarial drug resistance. However, the emergence of 
artemisinin- resistant strains in Southeast Asia threatens 
the usefulness of ACTs42–45 (see Drug resistance, below).

Mechanisms/pathophysiology
The red blood cell stage
As previously mentioned, the red blood cell stage of 
Plasmodium spp. infection is the cause of symptomatic 
malaria, as red blood cells are the site of abundant  
parasite replication.

Invasion. Plasmodium spp. parasites gain entry into the 
red blood cell through specific ligand–receptor inter-
actions mediated by proteins on the surface of the para-
site that interact with receptors on the host erythrocyte 
(mature red blood cell) or reticulocyte (immature red 
blood cell)46 (FIG. 3). Whereas P. falciparum can invade and  
replicate in erythrocytes and reticulocytes, P. vivax 
and other species predominantly invade reticulocytes, 
which are less abundant than erythrocytes47. Most of the 
parasite erythrocyte-binding proteins or reticulocyte- 
binding proteins that have been associated with inva-
sion are redundant or are expressed as a family of vari-
ant forms; however, for P. falciparum, two essential red 
blood cell receptors (basigin and complement decay- 
accelerating factor (also known as CD55)) have been 
identified (FIG. 3).

Replication. Once Plasmodium spp. gain entry into the 
red blood cell, they export hundreds of proteins into 
the host cell cytoplasm and cell surface that modulate the 
acquisition of nutrients, cell adhesion and sequestration 
in tissues, and pathogenesis3,48,49. Molecular and cell 
biology approaches are expanding our understanding of 
the molecular machinery that is required for the export, 
as well as the identification and function of the exported 
proteins.

In the red blood cell, Plasmodium spp. replicate rap-
idly, and during symptomatic disease the parasites may 
replicate exponentially to >1012 parasites per patient. This 
rapid growth requires sustained pools of nucleotides for 
the synthesis of DNA and RNA, and as a consequence, 
many antimalarials target pyrimidine biosynthesis50 
(FIG. 3). Plasmodium spp. are auxotrophic for all of the 
amino acids they need (that is, they must acquire all of 
these from food because they cannot synthesize them 
from precursors). Haemoglobin digestion (in a special-
ized food vacuole) supplies all amino acids except iso-
leucine, which must be obtained from other host cell 
components51. Haemoglobin digestion also releases 
haem, which is toxic to the parasite and, therefore, is poly-
merized into haemozoin (often called malaria pigment, 
which is visible as a blue pigment under light micro-
scopy), which is an insoluble crystal that sequesters the 
toxic metabolite52. How haem polymerization is facilitated 
by the parasite remains unclear. A complex of several 
proteases and haem detoxification protein (HDP) have 
been identified in the food vacuole; follow-up in vitro 
studies have shown that components of this complex 
(for example, falcipain 2, HDP and lipids) were able to 
catalyse the conversion of haem into haemozoin53. The 
importance of understanding this mechanism is high-
lighted by the finding that chloroquine and other anti-
malarials act by inhibiting haem polymerization54 (FIG. 3). 
There is also evidence that the iron (haem-bound or free) 

Box 1 | Malaria key terms

• Asymptomatic malaria: can be caused by all Plasmodium spp.; the patient has 
circulating parasites but no symptoms.

• Uncomplicated malaria: can be caused by all Plasmodium spp. Symptoms are 
nonspecific and can include fever, moderate‑to‑severe shaking chills, profuse 
sweating, headache, nausea, vomiting, diarrhoea and anaemia, with no clinical or 
laboratory findings of severe organ dysfunction.

• Severe (complicated) malaria: usually caused by infection with Plasmodium falciparum, 
although less frequently it can also be caused by Plasmodium vivax or Plasmodium 
knowlesi. Complications include severe anaemia and end‑organ damage, including 
coma (cerebral malaria), pulmonary complications (for example, oedema and 
hyperpnoeic syndrome228), and hypoglycaemia or acute kidney injury. Severe malaria is 
often associated with hyperparasitaemia and is associated with increased mortality.

• Placental malaria: parasites are present in the placenta, leading to poor outcomes for 
the fetus and possibly for the mother.
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liberated in the food vacuole during haemoglobin diges-
tion plays a part in activating the toxicity to the parasite 
of artemisinin derivatives42.

Nutrient uptake by the parasite is coupled to the 
detrimental accumulation of Na+; however, the parasite 
expresses an essential plasma membrane Na+ export 
pump (the cation ATPase P. falciparum p-type ATPase 4 
(PfATP4)) that can maintain Na+ homeostasis55–57 (FIG. 3). 
The remodelling of the plasma membrane (membrane 
ingression) to generate daughter merozoites in the late 
schizont stage requires P. falciparum phosphatidylinosi-
tol 4-kinase (PfPI(4)K)58. Both PfPI(4)K and PfATP4 are 
targets of new drugs that are under development (FIG. 3).

Immune evasion and host immunity
Malaria parasites first encounter the host immune sys-
tem when sporozoites are injected in the skin (meas-
ured to be ~15 per mosquito bite in one study59), where 
they may be phagocytosed by dendritic cells for antigen 
presentation in the lymph node draining the skin inoc-
ulation site60. The chances of transmission are increased 
when the host is bitten by mosquitoes that carry a larger 
number of sporozoites, despite the fact that the number 
of sporozoites that can simultaneously pass through the 
mosquito’s proximal duct is limited by the duct diame-
ter61. Sporozoites encounter several other effectors of the 
immune system, and how a minority of them can reach 
the liver and infect the hepatocytes is not well understood. 
Immune evasion in the liver could be in part explained 
by the ability of sporozoites to suppress the function of 
Kupffer cells (also known as stellate macrophages, which 
are the resident macrophages of the liver) and repress the 
expression of genes that encode MHC class I molecules62. 

Our understanding of the host immunity associated with 
the red blood cell stage is more complete. Virulence genes 
in Plasmodium spp. are part of large expanded multi-
gene families that are found in specialized (for example, 
subtelomeric) regions of the chromosomes7,63,64. These 
gene families (for example, var genes in P. falciparum) 
encode variants of cell surface proteins that function in 
immune evasion through antigenic variation and also 
are involved in mediating cytoadherence of infected red 
blood cells to endothelial cells, which leads to red blood 
cell sequestration in tissues.

Malaria disease severity — in terms of both parasite 
burden and the risk of complicated malaria — is depend-
ent on the levels of protective immunity acquired by the 
human host65–67, which can help to decrease the sever-
ity of symptoms and reduce the risk of severe malaria. 
Immunity is thought to result from circulating IgG anti-
bodies against surface proteins on sporozoites (thereby 
blocking hepatocyte invasion) and merozoites (thereby 
blocking red blood cell invasion). In high-transmission 
areas where malaria is prevalent year-round, adults 
develop partially protective immunity. Young infants 
(<6 months of age) are also afforded some protection, 
probably from the antibodies acquired from their 
mother, whereas children from 6 months to 5 years of age 
have the lowest levels of protective immunity and are the 
most susceptible to developing high parasitaemia with 
risks for complications and death (for example, see the 
study conducted in Kilifi, Kenya68). In low- transmission 
areas or areas that have seasonal malaria, individuals 
develop lower levels of protective immunity and typi-
cally have worse symptomatic malaria upon infection. 
This correlation between protective immunity and 

Box 2 | The Plasmodium spp. genome and genomic tools for understanding gene function

Characteristics of the Plasmodium spp. genome
• Each haploid genome comprises 23 Mb, which encode the programme 

for the complex life cycle of the parasite within ~5,500 genes17–19.

• Many genes encode proteins that have similarities to host proteins, 
many are novel, and many (approximately half) remain annotated as 
genes with hypothetical or of unknown function.

• The Plasmodium spp. genome includes an essential plastid, the 
apicoplast, which is derived from two sequential endosymbiotic events, 
and encodes genes from both plant (red algal) and bacterial 
(cyanobacterium) origin229. The bacterial origin of some enzymes 
encoded by the plastid makes Plasmodium spp. sensitive to some 
antibacterial agents, whereas the plant‑like pathways can be targeted 
by some herbicides. This plastid is one source of genes that differ from 
the host and that have been considered as potential drug targets.

• Gene transcription across the Plasmodium spp. intra‑red blood cell life 
cycle follows a preprogrammed cyclic cascade during which most genes 
are expressed at peak levels only once per life cycle230–232. Genes that 
encode cell surface proteins involved in host–parasite interactions are 
the exception.

• Gene expression patterns have been reported to lack responses to 
perturbations. Minimal changes were observed after treatment with 
antifolates and chloroquine; however, larger changes have been 
observed for other drug classes233,234. Species‑specific differences in 
transcription have been observed that seem to be linked to the 
mammalian host235.

• Ribosome profiling has demonstrated that transcription and translation 
are tightly coupled for 90% of genes236. Exceptions of translationally 
upregulated genes are typically found for proteins involved in merozoite 
egress and invasion.

• Epigenetic mechanisms to control gene expression include 
post‑translational histone modifications (methylation and acetylation  
of the amino terminus are the best‑characterized). Many of these 
modifications have been linked to parasite development63,237.

Genomic tools
• Gene knockouts are possible, but RNA interference‑mediated 

knockdown mechanisms do not function in Plasmodium spp.238,239.

• Regulated RNA aptamer‑based approaches have led to methods that 
enable gene knockouts to be functionally rescued; these methods are 
key for studying essential genes238,239.

• CRISPR–Cas9‑directed genome editing has greatly facilitated the 
genetic manipulation of Plasmodium falciparum238,239.

• Barcoded mutant Plasmodium berghei libraries have been developed to 
screen for competitive fitness across tens of mutants in a single mouse240.

• The in vitro selection of drug‑resistant mutant parasites followed by 
whole‑genome sequencing has also become a well‑established method 
for revealing candidate drug targets241.

• Metabolomics approaches facilitate the understanding of Plasmodium 
spp. biology, and have been used to profile several antimalarial 
compounds that have both known and unknown mechanisms of action242.
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malaria severity poses a challenge for successful malaria 
treatment programmes; as the number of infections and 
the transmission rates decrease, increasing numbers of 
patients will lose protective immunity and become sus-
ceptible to severe disease. The re- introduction of malaria 
in areas that had been malaria-free for many years 
could be devas tating in the short term and, therefore, 
 well-organized surveillance is required.

Pathogenesis
The predominant pathogenic mechanism is the haemo-
lysis of Plasmodium spp.-infected red blood cells, which 
release parasites and malaria endotoxin — understood 
to be a complex of haemozoin and parasite DNA, which 
trigger Toll-like receptor 9 (TLR9), a nucleotide-sensing 
receptor involved in the host immune response against 
pathogens69 — that leads to high levels of tumour necro-
sis factor (TNF) production and to clinical symptoms 
such as fever70–72. In addition, the membrane of infected 
red blood cells stiffens, and this loss of deformability 
contributes to the obstruction of capillaries, which has 
life-threatening consequences in severe malaria when 
vital organs are affected73.

Parasite factors that influence disease severity. Disease 
severity and pathogenesis are linked to surface proteins 
that are expressed by the parasite. In P. falciparum, a 
major surface antigen is encoded by the var gene fam-
ily, which contains ~60 members7,11,63,64. The majority of 
the var genes are classified into three subfamilies — A, 
B and C — on the basis of their genomic location and 
sequence: the B and C groups mediate binding to host 
cells via CD36 (also known as platelet glyco protein 4), 
whereas the A group genes mediate non-CD36 bind-
ing inter actions that have been linked to severe malaria, 
including cerebral malaria7,64. The var genes encode  
P. falciparum erythrocyte membrane protein 1 (PfEMP1), 
with the B and C groups accounting for >80% of PfEMP1 
variants. PfEMP1 is the major protein involved in cyto-
adherence and mediates the binding of infected erythro-
cytes to the endothelial vasculature. In cerebral malaria, 
A group PfEMP1 variants mediate the binding of infected 
erythro cytes to endothelial protein C receptor (EPCR) 
and intercellular adhesion molecule 1 (ICAM1) in the 
brain, causing pathology8,11,74,75. However, our knowledge 
of the host cell receptors that are involved in interactions 
with the infected erythrocytes is probably incomplete. 
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Malaria endemicity
 Countries endemic in 2015
 Countries endemic in 2000
 but no longer endemic in 2015
 Countries not endemic in 2000
 Not applicable
 P. falciparum prevalent
 P. vivax prevalent

Figure 2 | A map of malaria-endemic regions. The most-deadly malaria parasite, Plasmodium falciparum, is only found in 
tropical areas because its gametocytes require 10–18 days at a temperature of >21oC to mate and mature into infectious 
sporozoites inside the vector256. This development timeline is only possible in hot, tropical conditions; where the ambient 
temperature is lower, mosquitoes can still propagate, but sporozoite maturation is slowed down and, therefore, 
incomplete, and parasites perish without progeny when the mosquitoes die. Thus, P. falciparum is quite temperature- 
sensitive; a global temperature rise of 2–3 °C might result in an additional 5% of the world population (that is, several 
hundred million people) being exposed to malaria257. Of note, Plasmodium vivax and Plasmodium ovale can develop in 
mosquitoes at ambient temperatures as low as 16 °C. The abilities of these parasites to propagate at subtropical 
temperatures and to remain in the hypnozoite state in the liver are likely to explain their ability to survive dry or cold 
seasons, and the broader global distribution of these parasites258. Countries coded ‘not applicable’ in the Figure were not 
separately surveyed. Figure based on data from REF. 16, WHO.
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For example, thrombin — which regulates blood coagu-
lation via vitamin K-dependent protein C — can cleave 
PfEMP1, thereby reversing and preventing the endo thelial 
binding of infected erythrocytes74. In pregnancy, the 
expression of a specific PfEMP1 variant, variant surface 
antigen 2-CSA (VAR2CSA) — which is not encoded by 
one of the three main subfamilies — leads to an increased 
risk of placental malaria7,64 (BOX 3).

High parasitaemia levels also seem to correlate with 
poor outcomes7,75, and the circulating levels of P. falci
parum histidine-rich protein 2 (which is encoded by 
pfhrp2) have been used as a biomarker of parasitaemia 
that predicts the risks for microvascular obstruction and 
severe disease76. The brain pathology in children with 
severe malaria has recently been described in detail77.

Additionally, P. vivax does not express the same family 
of var genes that have been found to be strongly associ-
ated with endothelium binding and tissue sequestration, 
which drives severe disease in P. falciparum, and the abil-
ity of P. vivax to only invade reticulocytes leads to lower 
parasite levels7.

Host traits that influence disease severity. Malaria has 
exerted a strong selection pressure on the evolution of the 
human genome78,79. Some haemoglobin-encoding alleles 
that in homozygous genotypes cause severe blood dis-
orders (such as thalassaemia, the earliest described exam-
ple, and sickle cell disease) have been positively selected 

in populations living in malaria-endemic areas because 
heterozygous genotypes protect against malaria80. Other 
inherited haemoglobin abnormalities (for example, muta-
tions affecting haemoglobin C and haemoglobin E) can 
also provide protection against malaria81.

In addition, genetic polymorphisms that affect pro-
teins expressed by red blood cells or that lead to enzyme 
deficiencies can also be protective against severe disease. 
The red blood cell Duffy antigen is a key receptor that 
mediates the invasion of P. vivax through interaction 
with the Duffy antigen-binding protein on the parasite 
surface46. The genetic inheritance of mutations in ACKR1 
(which encodes the Duffy antigen) in Africa is credited 
with reducing the spread of P. vivax in this continent, 
although the finding of Duffy antigen-negative individ-
uals who can be infected with P. vivax suggests that we 
still have an incomplete understanding of the factors 
involved in P. vivax invasion82,83. Glucose-6-phosphate 
dehydrogenase (G6PD) deficiency78,79 provides protec-
tion against severe malaria through an unknown mech-
anism, at least in hemizygous males84, but unfortunately 
also leads to haemolytic anaemia in patients treated with 
primaquine, which is an 8-aminoquinoline antimalarial 
and the only agent currently approved for the treatment of  
latent (liver-stage) P. vivax malaria. The mode of action  
of primaquine, which is a prodrug, remains unknown.

The mechanisms of malaria protection in these varied 
genetic disorders have been widely studied81. Common 
findings include increased phagocytosis and elimination 
by the spleen of infected mutant erythrocytes, which 
reduces parasitaemia; reduced parasite invasion of mutant 
red blood cells; reduced intracellular growth rates; and 
reduced cytoadherence of infected mutant red blood 
cells. All of these effects increase protection against severe 
malaria, which is the main driver of human evolution in 
this case. Some point mutations in the gene that encodes 
haemoglobin alter the display of PfEMP1 on the surface 
of infected red blood cells, thereby diminishing cytoad-
herence to endothelial cells85,86. This finding highlights the 
crucial role of cytoadherence in promoting severe disease.

Finally, variability in the response to TNF, which is 
secreted from almost all tissues in response to malaria 
endotoxins, has also been proposed as a factor that medi-
ates differential host responses and contributes to severe 
malaria when levels are high7.

Diagnosis, screening and prevention
Diagnosis
The WHO criteria for the diagnosis of malaria consider 
two key aspects of the disease pathology: fever and the 
presence of parasites87. Parasites can be detected upon light 
microscopic examination of a blood smear (FIG. 4) or by a 
rapid diagnostic test (RDT)87. The patient’s risk of expo-
sure (for example, whether the patient lives in an endemic 
region or their travel history) can assist in making the diag-
nosis. Furthermore, the clinical expression of Plasmo dium 
spp. infection correlates with the species’ level of transmis-
sion in the area. The symptoms of uncomplicated malaria 
include sustained episodes of high fever (BOX 1); when high 
levels of parasitaemia are reached, several life-threatening 
 complications might occur (severe malaria) (BOX 1).

Box 3 | Malaria and pregnancy

• Pregnant women are more susceptible to Plasmodium spp. infection, particularly in 
their first pregnancy, as the mother‑to‑be has not yet acquired immunity to parasites 
that express the protein variant surface antigen 2‑CSA (VAR2CSA)35. VAR2CSA on the 
surface of infected red blood cells facilitates adhesion to chondroitin sulfate A (which 
is part of placental proteoglycans), leading to red blood cell sequestration in the 
placenta7,64. The risk of placental malaria is reduced in multigravid women from 
endemic areas, who generally have antibodies against VAR2CSA65–67.

• Malaria during pregnancy leads to increased risks to the mother and fetus36,243. Most 
studies have focused on sub‑Saharan Africa; however, pregnancy‑related risks are a 
problem throughout the world, including in Latin America, where Plasmodium vivax is 
the dominant causative agent244.

• Placental malaria might be asymptomatic or clinically mild, but it also leads to an 
increased risk of death for both the fetus and the mother. It predisposes to 
miscarriage, stillbirth, preterm delivery and babies with low birth weight whose 
quality of life will probably be poor because of cognitive, mobility, self‑care and 
sensation limitations; such babies also have a high mortality rate36,243.

• Intermittent preventive treatment with sulfadoxine–pyrimethamine in endemic 
regions is recommended and is generally administered at each antenatal visit following 
quickening108, although the emergence of resistance is threatening its efficacy245.

• Treatments for pregnant women must take into account the availability of safety data 
for the fetus. As a consequence, newer treatments require time to obtain sufficient 
confirmation of their tolerability in the different trimesters. The WHO recommends 
quinine sulfate and clindamycin in the first trimester. One study has shown that 
artemisinin derivatives provide comparable safety to quinine246, but, at the time of 
publication, the results of this study have not yet been incorporated into the WHO 
guidelines. In the second or third trimester, the WHO recommends artemisinin‑based 
combination therapies108.

• The treatment of pregnant women with P. vivax, Plasmodium ovale or 
Plasmodium malariae infection can also include chloroquine, unless resistance is 
suspected108. Women who are at a high risk of relapse can be given weekly chloroquine 
chemoprophylaxis until after delivery. Follow‑up therapy with primaquine against 
P. vivax and P. ovale hypnozoites is not thought to be safe during pregnancy.
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Figure 3 | Parasite entry into and replication within red blood cells. Invasion occurs through a multistep process259. 
During pre-invasion, low-affinity contacts are formed with the red blood cell membrane. Reorientation of the merozoite is 
necessary to enable close contact between parasite ligands and host cell receptors, and this is then followed by tight 
junction formation. In Plasmodium falciparum, a forward genetic screen has shown that complement decay-accelerating 
factor (not shown) on the host red blood cell is essential for the invasion of all P. falciparum strains260. The interaction of a 
complex of P. falciparum proteins (reticulocyte-binding protein homologue 5 (PfRH5), PfRH5-interacting protein (PfRipr) 
and cysteine-rich protective antigen (PfCyRPA)) with basigin on the red blood cell surface is also essential for the invasion 
in all strains261,262. PfRH5 has been studied as a potential vaccine candidate46, and antibodies against basigin have been 
considered as a potential therapeutic strategy263. During the PfRH5–PfRipr–PfCyRPA–basigin binding step, an opening 
forms between the parasite and the red blood cell, and this triggers Ca2+ release and enables parasite-released proteins to 
be inserted into the red blood cell membrane. These proteins are secreted from the micronemes (the small secretory 
organelles that cluster at the apical end of the merozoite) and from the neck of the rhoptries, and include rhoptry neck 
protein 2 (PfRON2). Binding between PfRON2 and apical membrane antigen 1 (PfAMA1) on the merozoite surface is 
required to mediate tight junction formation before the internalization process264, and PfAMA1 is also being evaluated as 
a vaccine candidate265. Parasite replication within the red blood cell requires the synthesis of DNA, which can be blocked 
by several antimalarials: pyrimethamine (PYR), P218 and cycloguanil target P. falciparum dihydrofolate reductase 
(PfDHFR)266, and atovaquone (ATO) blocks pyrimidine biosynthesis by inhibiting the expression of the mitochondrial gene 
pfcytb (which encodes P. falciparum cytochrome b) and by preventing the formation of oxidized coenzyme Q, which is 
needed to enable the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) to perform its reaction 
within the mitochondria50. The phase II clinical candidate DSM265 also blocks pyrimidine biosynthesis by directly 
inhibiting PfDHODH186. In addition to DNA synthesis, other processes can be targeted by antimalarial drugs. Chloroquine 
(CHQ) inhibits haem polymerization in the food vacuole52 but can be expelled from this compartment by the P. falciparum 
chloroquine-resistance transporter (PfCRT)267. The phase II clinical candidate KAE609 and the preclinical candidate 
SJ(557)733 both inhibit P. falciparum p-type ATPase 4 (PfATP4), which is required for Na+ homeostasis during nutrient 
acquisition57,183,184. The phase I clinical candidate MMV(390)048 (REF. 191) inhibits P. falciparum phosphatidylinositol 
4‑kinase (PfPI(4)K), which is required for the generation of transport vesicles that are needed to promote membrane 
alterations during ingression58. Hb, haemoglobin.
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The complications of severe malaria mostly relate to 
the blocking of blood vessels by infected red blood cells, 
with the severity and symptoms depending on what 
organ is affected (BOX 1) and to what extent, and differ 
by age; lung and kidney disease are unusual in children 
in Africa but are common in non-immune adults.

Parasitaemia. Patients with uncomplicated malaria 
typically have parasitaemia in the range of 1,000–50,000 
parasites per microlitre of blood (however, non-immune 
travellers and young children who have parasite num-
bers <1,000 can also present with symptoms). The higher 
numbers tend to be associated with severe malaria, 
but the correlation is imprecise and there is no cut-off  
density. In a pooled analysis of patient data from 61  
studies that were designed to measure the efficacy of 
ACTs (throughout 1998–2012), parasitaemia aver-
aged ~4,000 parasites per microlitre in South America, 
~10,000 parasites per microlitre in Asia and ~20,000 
para sites per microlitre in Africa88. The limit of detec-
tion by thick-smear microscopy is ~50 parasites per 
microlitre89. WHO-validated RDTs can detect 50–1,000 
parasites per microlitre with high specificity, but many 
lack sensitivity, especially when compared with PCR-
based methods90. The ability to detect low levels of par-
asitaemia is important for predicting clinical relapses, 
as parasitaemia can increase 20-fold over a 48-hour 
cycle period. These data are based on measurements in 
healthy volunteers (controlled human infection models) 
who were infected at a defined time point with a known 
number or parasites, and in whom the asymptomatic 
parasite reproduction was monitored by quantitative 
PCR up to the point at which the individual received 
rescue treatment91.

In hyperendemic areas (with year-round disease 
transmission), often many children and adults are 
asymptomatic carriers of the parasite. In these individ-
uals, the immune system maintains parasites at equi-
librium levels in a ‘tug-of-war’. However, parasitaemia 
in asymptomatic carriers can be extremely high, with 
reports of levels as high as 50,000 parasites per micro-
litre in a study of asymptomatic pregnant women 
(range: 80–55,400 parasites per microlitre)92. In addition 
to the obvious risks for such people, they represent a 
reservoir for infecting mosquitoes, leading to contin-
ued transmission. In clinical studies, the parasitaemia 
of asymptomatic carriers can be monitored using PCR-
based methods, which can detect as few as 22 parasites 
per millilitre93. However, the detection of low-level 
para sitaemia in low-resource settings requires advanced 
technology. Loop-mediated isothermal amplification 
(LAMP)94 is one promising approach. This type of PCR 
is fast (109-fold amplification in 1 hour) and does not 
require thermal cycling, which reduces the requirement 
for expensive hardware. Versions of this method that 
do not require electricity are being developed95. Nucleic 
acid-based techniques such as LAMP and PCR-based 
methods also have the advantage that they can be used 
to detect multiple pathogens simultaneously and, in the-
ory, identify drug-resistant strains96. This approach ena-
bles the accurate diagnosis of which Plasmodium spp. 

is involved, and in the future could lead to the develop-
ment of multiplexed diagnostics that enable differential 
diagnosis of the causative pathogens (including bacteria 
and viruses) in patients who present with fever97.

RDTs. RDTs are based on the immunological detec-
tion of parasite antigens (such as lactate dehydrogenase 
(LDH) or histidine-rich protein 2) in the blood, have 
sensitivities comparable to that of light microscopy 
examination and have the advantage that they do not 
require extensive training of the user. These tests pro-
vide rapid diagnosis at a point-of-care level in resource- 
limited settings and can, therefore, substantially improve 
malaria control. However, occasionally, false-positive 
results from RDTs can be problematic because they 
could lead to the wrong perception that antimalarial 
medicines are ineffective. False-negative test results 
have been reportedly caused by pfhrp2 gene deletions in 
P. falciparum strains in South America98–103. Current data 
indicate that LDH-targeting RDTs are less sensitive for 
P. vivax than for P. falciparum104, and limited information 
on the sensitivity of these tests for the rarer species, such 
as P. ovale or P. malariae, is available. RDTs also offer a 
great opportunity to track malaria epidemiology; photos 
taken with mobile phones of the results of the tests can 
be uploaded to databases (even using cloud-based data 
architecture105) and provide an automated collection of 
surveillance data106.

Prevention in vulnerable populations
The prevention of Plasmodium spp. infection can be 
accomplished by different means: vector control, chemo-
prevention and vaccines. Mosquito (vector) control 
methods include the following (from the broadest to the 
most targeted): the widespread use of insecticides, such 
as DDT campaigns; the use of larvicides; the destruc-
tion of breeding grounds (that is, draining marshes and 
other breeding reservoirs); indoor residual spraying with 
insecticides (that is, the application of residual insecticide 
inside dwellings, on walls, curtains or other surfaces); 
and the use of insecticide-treated bed nets. The use of 
endectocides has also been proposed; these drugs, such as 
ivermectin, kill or reduce the lifespan of mosquitoes that 
feed on individuals who have taken them107. However, 
this approach is still experimental; individuals would be 
taking drugs that have no direct benefit to themselves 
(as they do not directly prevent human illness), and so 
the level of safety data required for the registration of 
endectocides for this purpose will need to be substantial. 
Vector control approaches differ in terms of their efficacy, 
costs and the extent of their effect on the environment. 
Targeted approaches such as insecticide-treated bed nets 
have had a strong effect. Chemoprevention is an effective 
strategy that has been used to reduce malaria incidence 
in campaigns of seasonal malaria chemoprevention, in  
intermittent preventive treatment for children and 
pregnant women, and for mass drug administration108. 
Such antimalarials need to have an excellent safety pro-
file as they are given to large numbers of healthy peo-
ple. Vaccines excel in eradicating disease, but effective 
malaria vaccines are challenging because — unlike 
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viruses and bacteria, against which effective vaccines 
have been developed — protist pathogens (such as 
Plasmodium spp.) are large-genome microorganisms that 
have evolved highly effective immune evasion strategies 
(such as encoding dozens or hundreds of cell surface pro-
tein variants). Nevertheless, the improved biotechnologi-
cal arsenal to generate antigens and improved adjuvants 
could help to overcome these issues.

Vector control measures. The eradication of mosqui-
toes is no longer considered an option to eliminate 
malaria; however, changing the capacity of the vector 
reservoir has substantial effects on malaria incidence. 
Long-lasting insecticide-treated bed nets and indoor 
residual spraying have been calculated to be responsi-
ble for two-thirds of the malaria cases averted in Africa 
between 2000 and 2015 (REF. 12). Today’s favoured and 
more-focused vector control approach involves the use 
of fine-mazed, sturdy, long-lasting and wash-proof 
insecticide-treated bed nets109. The fabric of these nets 
is impregnated with an insecticide that maintains its 
efficacy after ≥20 standardized laboratory washes, and 
these nets have a 3-year recommended use. Insects are 
attracted by the person below the net but are killed as 

they touch the net. However, the efficacy of bed nets 
is threatened by several factors, including their inap-
propriate use (for example, for fishing purposes) and 
behavioural changes in the mosquitoes, which have 
also begun to bite during the day110. The main prob-
lem, however, is the increasing emergence of vector 
resistance to insecticides, especially pyrethroids110 
and, therefore, new insecticides with different modes 
of action are urgently needed. New insecticides have 
been identified by screening millions of compounds 
from the libraries of agrochemical companies, but even 
those at the most advanced stages of development are 
still 5–7 years from deployment (see the International 
Vector Control Consortium website (http://www.ivcc.
com) and REF. 111) (FIG. 5). Few of these new insecticides 
are suitable for application in bed nets (because of high 
costs or unfavourable chemical properties), but some 
can be used for indoor residual spraying. New ways of 
deploying these molecules are also being developed, 
such as improved spraying technologies112, timed release 
to coincide with seasonal transmission and slow-release 
polymer-based wall linings113,114.

Genetic approaches, fuelled by advances in the 
CRISPR–Cas9 gene editing technology, represent an 
exciting area of development for novel insect control 
strategies. There are currently two main approaches: 
population suppression, whereby mosquitoes are mod-
ified so that any progeny are sterile; and population 
alteration, whereby mosquitoes are modified so that 
the progeny are refractory to Plasmodium spp. infec-
tion115,116. Initial approaches to population suppression 
involved releasing sterile male insects117. These strate-
gies have now been developed further, with the release 
of male insects carrying a dominant lethal gene that kills 
their progeny118,119. Gene drive systems can be used for 
both population suppression and population alteration. 
These systems use homing endonucleases, which are 
microbial enzymes that induce the lateral transfer of an 
intervening DNA sequence and can, therefore, convert 
a heterozygote individual into a homozygote. Homing 
endonucleases have been re-engineered to recognize 
mosquito genes120 and can rapidly increase the frequency 
of desirable traits in a mosquito population121. Gene 
drive systems have now been used in feasibility stud-
ies to reduce the size of mosquito populations122 or to 
make mosquitoes less able to transmit malaria-causing 
parasites123. Another approach is inspired by the finding 
that Aedes aegypti mosquitoes (the vector for Dengue, 
yellow fever and Zika viruses) infected with bacteria 
of the Wolbachia spp. (a parasite that naturally colo-
nizes numerous species of insects) cannot transmit the 
Dengue virus to human hosts124. Symbiont Wolbachia 
spp. can be modified to make them deleterious to other 
parasites in the same host, and progress has been made 
in finding symbionts that can colonize Anopheles spp. 
mosquitoes125,126. Although all of the above approaches 
are very promising, they are still at a very early stage, 
and the environmental uncertainties associated with the 
widespread distribution of such technologies, as well as 
the complex regulatory requirements, provide additional 
hurdles that will need to be overcome.
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Figure 4 | Microscopic images of parasite-infected red blood cells. Thin blood films 
showing Plasmodium falciparum (upper panel) and Plasmodium vivax (lower panel) at 
different stages of blood-stage development. The images are from methanol-fixed thin 
films that were stained for 30 minutes in 5% Giemsa. The samples were taken from Thai 
and Korean patients with malaria: Ethical Review Committee for Research in Human 
Subjects, Ministry of Public Health, Thailand (reference no. 4/2549, 6 February 2006). 
The sex symbols represent microgametes (male symbol) and macrogametes (female 
symbol). ER, early ring stage; ES, early schizont stage; ET, early trophozoite stage;  
FM, free merozoites; LR, late ring stage; LS, late schizont stage; LT, late trophozoite stage; 
U, uninfected red blood cell. The slides used were from a previously published study268 
but the images shown have not been previously published. Images courtesy of A.-R. 
Eruera and B. Russell, University of Otago, New Zealand.
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Chemoprotection and chemoprevention. Chemo-
protection describes the use of medicines (given at 
prophylactic doses) to temporarily protect subjects 
entering an area of high endemicity — historically, 
tourists and military personnel — and populations at 
risk from emergent epidemics, but is also being increas-
ingly considered for individuals visiting areas that 
have recently become malaria-free. Chemoprevention, 
which is often used in the context of seasonal malaria, 
describes the use of medicines with demonstrated effi-
cacy that are given regularly to large populations at full 
treatment doses (as some of the individuals treated will 
be asymptomatic carriers).

Currently, there are three ‘gold-standard’ alterna-
tives for chemoprotection: daily atovaquone–proguanil, 
daily doxycycline and weekly mefloquine. Mefloquine 
is the current mainstay drug used to prevent the spread 
of multidrug-resistant Plasmodium spp. in the Greater 
Mekong subregion of Southeast Asia, despite having 
a ‘black box warning’ for psychiatric adverse events; 
however, an analysis of pooled data from 20,000 
well- studied patients found that this risk was small 
(<12 cases per 10,000 treatments)127. An active search 
to find new medicines that could be useful in chemo-
protection, in particular medicines that can be given 
weekly or even less frequently, is underway. One inter-
esting possibility is the use of long-acting injectable 
intramuscular combination chemoprotectants, which, 
if effective, could easily compete with vaccination, if 
they provided protection with 3–4 injections per year. 
Such an approach (called pre-exposure prophylaxis) 

is being studied for HIV infection (which also poses 
major challenges to the development of an effective vac-
cine)128 and may lead to the development of long-acting 
injectable drug formulations129 produced as crystalline 
nanoparticles (to enhance water solubility) using the 
milling technique.

Chemoprevention generally refers to seasonal malaria 
chemoprevention campaigns, which target children 
<5 years of age130. In the Sahel region (the area just south 
of the Sahara Desert, where there are seasonal rains 
and a recurrent threat of malaria), seasonal malaria 
chemoprevention with a combination of sulfadoxine– 
pyrimethamine plus amodiaquine had a strong 
effect131–135, with a >80% reduction in the number of 
malaria cases among children and a >50% reduction 
in mortality136. Although these campaigns are opera-
tionally complex — as the treatment has to be given 
monthly — >20 million children have been protected 
between 2015 and 2016, at a cost of ~US$1 per treat-
ment. A concern about seasonal malaria chemopreven-
tion is the potential for a rebound effect of the disease. 
Rebound could occur if children lose immunity to 
malaria while receiving treatment that is later stopped 
because they reached the age limit, if campaigns are 
interrupted because of economic difficulties or social 
unrest (war), or if drug resistance develops. Owing to 
the presence of resistant strains, a different approach 
is needed in African areas south of the Equator137, and 
this led to trials of monthly 3-day courses of ACTs 
in seasonal chemoprevention135; there is an increas-
ing amount of literature on the impressive efficacy of 
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Research categories

Figure 5 | The global pipeline for malaria vector control. The categories of compounds that are currently under study 
are defined in the first column on the left; compounds belonging to these categories have advanced to phase I trials or 
later stages. New screening hits (developed by Syngenta, Bayer, Sumitomo and the Innovative Vector Control Consortium 
(IVCC)) are at early research stages and are not expected to be deployed until 2020–2022. Similarly, species‑specific 
approaches to the biological control of mosquitoes are not expected to move forward before 2025. The main data source 
for this Figure was the IVCC; for the latest updates visit the IVCC website (www.ivcc.com). Note that not all compounds 
listed on the IVCC website are shown in this Figure. The dates reflect the expected deployment dates. AI, active 
ingredient; CS, capsule suspension; IRS, indoor residual spray; LLIN, long-lasting insecticidal mosquito net; LLIRS, 
long‑lasting indoor residual spray; LSHTM, London School of Hygiene and Tropical Medicine (UK); PAMVERC, Pan‑African 
Malaria Vector Research Consortium. *Clothianidin and chlorfenapyr.
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dihydroartemisinin (DHA)–piperaquine to prevent 
malaria in high-risk groups138. To reduce the potential 
for the emergence of drug resistance, the WHO good 
practice standards state that, when possible, drugs used 
for chemoprevention should differ from the front-line 
treatment that is used in the same country or region108, 
which emphasizes the need for the development of 
multi ple, new and diverse treatments to provide a wider 
range of options.

Finally, intermittent preventive treatment is also 
recommended to protect pregnant women in all 
 malaria-endemic areas108 (BOX 3).

Vaccines. Malaria, along with tuberculosis and HIV 
infection, is a disease in which all components of the 
immune response (both cellular, in particular, dur-
ing the liver stage, and humoral, during the blood 
stage) are involved yet provide only partial protection, 
which means that developing an effective vaccine will 
be a challenge. The fact that adults living in high- 
transmission malarious areas acquire partial protec-
tive immunity indicates that vaccination is a possibility.  
As a consequence, parasite proteins targeted by natural 
immunity, such as the circumsporozoite protein (the 
most prominent surface antigen expressed by sporo-
zoites), proteins expressed by merozoites and parasite 
antigens exposed on the surface of infected red blood 
cells139 have been studied for their potential to be used 
in vaccine programmes140. However, experimental 
malaria vaccines tend to target specific parasite species 
and surface proteins, an approach that both restricts 
their use and provides scope for the emergence of 
resistance. Sustained exposure to malaria is needed to 
maintain natural protective immunity, which is other-
wise lost within 3–5 years141, perhaps as a result of 
the clearance of circu lating antibodies and the failure 
of memory B cells to develop into long-lived plasma 
B cells. Controlled human infection models142–144 have 
started to provide a more precise understanding of the 
early cytokine and T cell responses in naive subjects, 
emphasizing the role of regulatory T cells in damp-
ening the response against the parasite, which results 
in the exhaustion of T cells145. Vaccine development 
is currently focusing on using multiple antigens from 
different stages of the parasite life cycle. Future work 
will also need to focus on the nature of the immune 
response in humans and specifically the factors that 
lead to diminished T cell responses. New generations 
of adjuvants are needed, possibly compounds that pro-
duce the desired specific response rather than inducing 
general immune stimulation. This is a challenging area 
of research, as adjuvants often have a completely dif-
ferent efficacy in humans compared with in preclinical 
animal models.

Currently, there is no vaccine deployed against 
malaria. The ideal vaccine should protect against both 
P. falciparum and P. vivax, with a protective, lasting 
efficacy of at least 75%. The most advanced candi-
date is RTS,S (trade name: Mosquirix; developed by 
GlaxoSmithKline and the Program for Appropriate 
Technology in Health Malaria Vaccine Initiative), which 

contains a recombinant protein with parts of the P. fal
ciparum circumsporozoite protein combined with the 
hepatitis B virus surface antigen and a proprietary adju-
vant. RTS,S reduced the number of malaria cases by half 
in 4,358 children 5–17 months of age during the first 
year following vaccination146, preventing 1,774 cases 
for every 1,000 children also owing to herd immunity, 
and had an efficacy of 40% over the entire 48 months of 
follow-up in children who received four vaccine doses 
over a 4-year period147. The efficacy of RTS,S during the 
entire follow-up period dropped to 26% when children 
only received three vaccine doses. The efficacy during 
the first year in 6–12-week-old children was limited to 
33%. Thus, the RTS,S vaccine failed to provide long-
term protection. Further studies, as requested by the 
WHO, will be done in pilot implementations of 720,000 
children in Ghana, Kenya and Malawi (240,000 in each 
country, half of whom will receive the vaccine) before 
a final policy recommendation is made. However, a 
vaccine with only partial and short-term efficacy could 
still be used in the fight against malaria. RTS,S could be 
combined with chemoprevention to interrupt malaria 
transmission in low-endemic areas148. Thus, vaccines 
that are unable to prevent Plasmodium spp. infection 
could be used to prevent transmission (for example,  
by targeting gametocytes) or used as an additional  
protective measure in pregnant women.

A large pipeline of vaccine candidates is under 
evalu ation (FIG. 6). These include irradiated sporozoites 
— an approach that maximizes the variety of antigens 
exposed149 — and subunit vaccines, which could be 
developed into multicomponent, multistage and multi- 
antigen formulations150. Although vaccines are typi-
cally designed for children, as the malaria map shrinks, 
both paediatric and adult populations living in newly 
malaria-free zones will need protection because they 
would probably lose any naturally acquired immunity 
and would, therefore, be more susceptible. Indeed, 
in recent years, there has been a focus on develop-
ing transmission-blocking vaccines to drive malaria 
elimin ation. This approach has been labelled altruis-
tic, as vaccination would have no direct benefit for the 
person receiving it, but it would benefit the commu-
nity; a regulatory pathway for such a novel approach 
has been proposed151,152. The most clinically advanced 
vaccine candidate that is based on this approach is a 
conjugate vaccine that targets the female gametocyte 
marker Pfs25 (REF. 153), and other antigens are being 
tested preclinically. Monoclonal antibodies are another 
potential tool to provide protection. Improvements in 
manufacturing and high-expressing cell lines are help-
ing to overcome the major barrier to the use of mono-
clonal antibodies (high costs)154, and improvements in 
potency and pharma cokinetics are reducing the volume 
and frequency of administration155. Monoclonal anti-
bodies could be particularly useful to safely provide the 
relatively short-term protection needed in pregnancy. 
The molecular basis of the interaction between parasites 
and the placenta is quite well understood; two phase I 
trials of vaccines that are based on the VAR2CSA  
antigen are under way156,157.
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Management
No single drug is ideal against all Plasmodium spp. or all 
of the manifestations of the disease that occur in differ-
ent patient populations. Thus, treatment must be tailored 
to each situation appropriately108,158. First, the treatment 
of uncomplicated malaria and that of severe malaria 
are distinct. In uncomplicated malaria, the treatment 

of choice is an oral medicine with high efficacy and a 
low adverse-effect profile. However, the preferred ini-
tial therapy in severe malaria requires rapid onset and 
includes the parenteral administration of an artemisinin 
derivative, which can rapidly clear the parasites from 
the blood, and it is also suitable for those patients who 
have changes in mental status (such as coma) that make 
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Figure 6 | The global pipeline for malaria vaccines. The main data source 
for this Figure was REF. 269. Not all vaccines under development are shown 
in the Figure. AIMV VLP, Alfalfa mosaic virus virus‑like particle; AMA1, 
apical membrane antigen 1; AMANET, African Malaria Network Trust; ASH, 
Albert Schweitzer Hospital (Gabon); ChAd63, chimpanzee adenovirus 63; 
CHUV, Centre Hospitalier Universitaire Vaudois (Switzerland); CNRFP, 
Centre National de Recherche et de Formation sur le Paludisme 
(Burkina Faso); CS, circumsporozoite protein; CSP, circumsporozoite 
protein; EBA, erythrocyte‑binding antigen; ee, elimination eradication; 
EP, electroporation; EPA, Pseudomonas aeruginosa exoprotein A;  
EVI, European Vaccine Initiative; CVac, chemoprophylaxis vaccine; 
FhCMB, Fraunhofer Center for Molecular Biotechnology (USA); GSK, 
GlaxoSmithKline; IP, Institut Pasteur (France); INSERM, Institut National 
de la Santé et de la Recherche Médicale (France); JHU, Johns Hopkins 
University (USA); KCMC, Kilimanjaro Christian Medical College (Tanzania); 
KMRI, Kenyan Medical Research Institute; LSHTM, London School of 
Hygiene and Tropical Medicine (UK); M3V.Ad.PfCA, multi‑antigen, 
multistage, adenovirus-vectored vaccine expressing Plasmodium 
falciparum CSP and AMA1 antigens; mAb, monoclonal antibody; 
ME‑TRAP multiple epitope thrombospondin‑related adhesion protein; 
MRCG, Medical Research Council (The Gambia); MSP, merozoite surface 
protein; MVA, modified vaccinia virus Ankara; MUK, Makerere University 
Kampala (Uganda); NHRC, Navrongo Health Research Centre (Ghana); 

NIAID, National Institute of Allergy and Infectious Diseases (USA); NIMR, 
National Institute for Medical Research (UK); NMRC, Naval Medical 
Research Center (USA); PAMCPH, pregnancy-associated malaria 
Copenhagen; PATH, Program for Appropriate Technology in Health; 
PfAMA1-DiCo, diversity-covering Plasmodium falciparum AMA1; 
PfCelTOS, Plasmodium falciparum cell-traversal protein for ookinetes and 
sporozoites; PfPEBS, Plasmodium falciparum pre-erythrocytic and blood 
stage; PfSPZ, Plasmodium falciparum sporozoite; PfSPZ‑GA1, genetically 
attenuated PfSPZ; pp, paediatric prevention; PRIMALVAC, PRIMVAC 
project (INSERM); PRIMVAC, recombinant var2CSA protein as vaccine 
candidate for placental malaria; Pfs25, Plasmodium falciparum 25 kDa 
ookinete surface antigen; PvCSP, Plasmodium vivax circumsporozoite 
protein; PvDBP, Plasmodium vivax Duffy-binding protein; Rh or RH, reticu-
locyte-binding protein homologue; SAPN, self-assembling protein 
nanoparticle; SSI, Statens Serum Institut (Denmark); U., University; UCAP, 
Université Cheikh Anta Diop (Senegal); UKT, Institute of Tropical Medicine, 
University of Tübingen (Germany); USAMMRC, US Army Medical Research 
and Materiel Command; WEHI, Walter and Eliza Hall Institute of Medical 
Research (Australia); WRAIR, Walter Reed Army Institute of Research 
(USA). *Sponsors of late‑stage clinical trials. ‡Pending review or approval 
by WHO prequalification, or by regulatory bodies who are members or 
observers of the International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use (ICH). 

P R I M E R

NATURE REVIEWS | DISEASE PRIMERS  VOLUME 3 | ARTICLE NUMBER 17050 | 13

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.





swallowing oral medications impossible. For the treat-
ment of malaria during pregnancy, the options are lim-
ited to the drugs that are known to be safe for both the 
expectant mother and the fetus, and different regimens 
are needed (BOX 2). Different drugs are used for differ-
ent Plasmodium spp., and the choice is usually driven 
more by drug resistance frequencies (which are lower 
in P. vivax, P. ovale, P. malariae and P. knowlesi than in 
P. falciparum) than by species differences as such. Thus, 
chloroquine, with its low cost and excellent safety, is 
used in most cases of non-P. falciparum malaria, where it 
remains effective, whereas P. falciparum malaria requires 
newer medicines that overcome resistance issues. The 
persistence of P. vivax and P. ovale hypnozoites, even 
after clearance of the stages that cause symptoms, neces-
sitates additional treatments. Only primaquine targets 
hypnozoites.

P. falciparum malaria
The mainstay treatments for uncomplicated P. falci
parum malaria are ACTs: fixed-dose combinations 
of two drugs, an artemisinin derivative and a quinine 
 derivative108 (BOX 4; TABLE 1).

Owing to its high lipophilicity, artemisinin itself is 
not the molecule of choice in any stringent regulatory 
authority-approved combination. Instead, semi synthetic 
derivatives are used: namely, DHA (the reduced hemi-
acetal of the major active metabolite of many arte-
misinin derivatives), artesunate (a succinate prodrug  
of DHA that is highly water-soluble) or artemether  
(a  methylether prodrug of DHA).

Quinine has been used in medicine for centu-
ries159, but it was only in the mid-20th century that a 
synthetic form was made and the emerging pharma-
ceutical and government research sectors delivered 
the next-generation medicines that built on it. The 
combination partners of choice are 4-aminoquinolines 
(for example, amodiaquine, piperaquine and pyro-
naridine) and amino-alcohols (such as mefloquine or 
lumefantrine); these molecules are believed to interfere 
with haemozoin formation. There are now five ACTs 
that have been approved or are close to approval by 

the FDA, the European Medicines Agency (EMA) or 
WHO prequalification (FIGS 7,8; TABLE 1). In pivotal clin-
ical studies, these combinations have proven extremely 
effective (achieving an adequate clinical and parasito-
logical response (that is, the absence of parasitaemia at 
day 28 in >94% of patients; for example, see REF. 160), 
are well-tolerated (as they have been given to >300 mil-
lion paediatric patients), are affordable (typically under 
US$1 per dose) and, thanks to ingenious formulations 
and packaging, are stable in tropical climate conditions.

Following the results of comprehensive studies in 
Africa and Asia, the injectable treatment of choice for 
severe P. falciparum malaria is artesunate161–163. In the 
United States, artesunate for intravenous use is availa-
ble as an Investigational New Drug (IND) through the 
Centers for Disease Control and Prevention (CDC) 
malaria hotline and shows efficacies of >90% even in 
patients who are already unconscious161. Sometimes, 
however, in low-income countries, it is necessary to 
administer intravenous quinine or quinine while await-
ing an artesunate supply. Suppositories of artesunate are 
in late-stage product development164 and are already 
available in Africa as a pre-referral treatment to keep 
patients alive while they reach a health clinic.

P. vivax malaria
Chloroquine or ACTs are WHO-recommended for 
uncomplicated P. vivax malaria108 (although chloroquine 
is no longer used in several countries, such as Indonesia). 
As chloroquine-resistant P. vivax is becoming increas-
ingly widespread, particularly in Asia, the use of ACTs 
is increasing; although only artesunate–pyronaridine 
is approved for the treatment of blood-stage P. vivax 
malaria, the other ACTs are also effective and are used 
off-label. Relapses of P. vivax malaria present a problem 
in malaria control. Relapse frequencies differ among 
P. vivax strains; they are high (typically within 3 weeks) 
in all-year transmission areas, such as Papua New 
Guinea, but relapse occurs on average after 7 months in 
areas with a dry or winter season. Some P. vivax strains, 
such as the Moscow and North Korea strains, are not, 
in most cases, symptomatic at the time of first infection 
but become symptomatic only following reactivation 
of the hypnozoites165. Primaquine needs to be admin-
istered in addition to the primary treatment to prevent 
relapse and transmission, which can occur even years 
after the primary infection. Primaquine treatment, how-
ever, requires 14 days of treatment, has gastrointestinal 
adverse effects in some patients, and is contraindicated 
in pregnant women and in patients who are deficient in 
or express low levels of G6PD (as it can cause haemo-
lysis). Tafenoquine166, a next-generation 8-aminoquin-
oline, is currently completing phase III clinical studies. 
As with patients receiving primaquine, patients receiv-
ing tafenoquine will still require an assessment of their 
G6PD enzyme activity to ensure safe use of the drug and 
to determine the optimal dose. In phase II studies, taf-
enoquine was shown to have an efficacy similar to that 
of primaquine but with a single dose only compared 
with the 7–14-day treatment with primaquine; higher 
patient compliance is expected to be a major benefit of a 

Box 4 | Artemisinin

Artemisinin (also known as qinghaosu in China; see the structure) is extracted from the 
leaves of the Artemisia annua plant.

Youyou Tu was recognized by the 2015 Nobel Prize committee for her contribution to 
medicine for the discovery of artemisinin, which she achieved by retrieving and 
following instructions from ancient Chinese texts247. Owing to the ability of artemisinin 
to rapidly reduce parasitaemia and fever, the effect that artemisinin and its derivatives 
has had on the management of malaria cannot be overstated; since their introduction 
in the 1970s and their subsequent wider implementation — which 
was possible particularly owing to the work of Nicholas White and 
colleagues248–251 — millions of lives have been saved. These drugs 
seem to be activated by haem‑derived iron, and their toxicity is 
probably mediated through the formation of reactive oxidative 
radicals42. Data indicate that they interfere with 
phosphatidylinositol‑3‑phosphate metabolism (which is thought 
to be involved in the trafficking of haemoglobin to the digestive 
vacuole252) and provide possible mechanistic insights into the 
nature of clinically observed artemisinin resistance253.
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single-dose regimen. The ultimate elimination of P. vivax 
malaria will be dependent on the availability of safe and 
effective anti-relapse agents, and is, therefore, a major 
focus of the drug discovery community.

Drug resistance
The two drugs in ACTs have very different pharmaco-
kinetic profiles in patients. The artemisinin components 
have a plasma half-life of only a few hours yet can reduce 
parasitaemia by three-to-four orders of magnitude. By 
contrast, the 4-aminoquinolines and amino- alcohols 
have long terminal half-lives (>4 days), providing cure 
(defined as an adequate clinical and parasitological 
response) and varying levels of post-treatment pro-
phylaxis. The prolonged half-life of the non- artemisinin 
component of ACTs has raised concerns in the research 
community owing to the risk of drug resistance devel-
opment. However, the effectiveness of the ACTs in rap-
idly reducing parasitaemia suggests that any emerging 
resistance has arisen largely as a result of poor clinical 
practice, including the use of artemisinin derivatives 
as monotherapy, a lack of patient compliance and 
substandard medicine quality (including counter-
feits); these are all situations in which large numbers 
of parasites are exposed to a single active molecule167. 
However, resistance to piperaquine168 and partial resist-
ance to artemisinin169 (which manifests as a reduced 
rate of parasite clearance rate rather than a shift in the 
half-maximal inhibitory concentration (IC50)) has been 
confirmed in the Greater Mekong subregion, as well as 
resistance to mefloquine and amodiaquine in various 
parts of the world170. Africa has so far been spared, but 
reports of treatment failure for either artemisinin171 or 
ACT172 in African isolates of P. falciparum have raised 
concerns. Thus, artemisinin-resistant Plasmodium spp. 
and insecticide-resistant mosquitoes are major threats 
to the progress that has been made in reducing the num-
ber of malaria-related deaths through current control 
programmes. It is important to emphasize that progress 
against malaria has historically been volatile; in many 

areas, the disease has re-emerged as the efficacy of old 
drugs has been lost in strains that developed resistance.

Many advances have been made in identifying 
genetic markers in Plasmodium spp. that correlate 
with resistance to clinically used drugs (TABLE 2). These 
markers enable the research and medical communi-
ties to proactively survey parasite populations to make 
informed treatment choices. Cross-resistance profiles 
reveal reciprocity between 4-aminoquinolines and 
amino- alcohols (that is, parasites resistant to one class 
are also less sensitive to the other). In addition, a drug 
can exert two opposite selective pressures: one towards 
the selection of resistant mutants and the other towards 
the selection of strains that have increased sensitivity 
to a different drug, a phenomenon known as ‘inverse 
selective pressure’ (REFS 173,174). These findings sup-
port the introduction of treatment rotation or triple 
combination therapies as potential future options. 
Finally, the drug discovery and development pipeline 
is delivering not only new compounds that have novel 
modes of action and overcome known resistant strains 
but also chemicals that have the potential to be effec-
tive in a single dose, which could overcome compli-
ance issues. Nevertheless, policymakers need to be on 
high alert to prevent or rapidly eliminate outbreaks of  
resistant strains, and to prioritize the development  
of new treatments.

The drug discovery and development pipeline
The most comprehensive antimalarial discovery port-
folio has been developed by the not-for-profit prod-
uct development partnership Medicines for Malaria 
Venture (MMV) in collaboration with its partners in 
both academia and the pharmaceutical industry, with 
support from donors (mainly government agencies 
and philanthropic foundations) (FIG. 7). Promising 
compound series have been identified from three 
approaches: hypothesis-driven design to develop alter-
natives to marketed compounds (for example, synthetic 
peroxides such as ozonides); target-based screening 

Table 1 | The artemisinin-based combination therapies within the portfolio of the MMV*

Drug 
combination

Oral 
formulation 
(adults; 
children)

Number of 
patients treated 
(million)

Number of 
countries 
where 
approved

Brand name 
(manufacturer)

Regulatory body (approval date)

Artesunate and 
amodiaquine

Oral formulation; 
dispersible

>400 33 ASAQ Winthrop (Sanofi, 
DNDi and MMV)

WHO (2008)

Artemether–
lumefantrine

Oral formulation; 
dispersible

>300 (paediatric) >50 Coartem D (Novartis and 
MMV)

Swiss Medic (2008); FDA (2012)

DHA–
piperaquine

Coated tablets; 
dispersible‡

2 11 Eurartesim (Sigma Tau and 
MMV)

EMA (2011); WHO prequalification (2015) 

Artesunate–
pyronaridine

Oral formulation; 
granules

Pending inclusion in 
standard treatment 
guidelines

20 Pyramax (Shin Poong and 
MMV)

EMA Article 58 and WHO prequalification 
(2012) then positive opinion (2015) for 
granules and multiple use

Artesunate–
mefloquine

Oral formulation; 
granules

~1 10 No brand name 
(Farmanguinhos, Fiocruz, 
DNDi, Cipla and MMV)

Cipla WHO prequalified (2012); 
Farmanguinhos approval pending

DHA, dihydroartemisinin; DNDi, Drugs for Neglected Diseases initiative; EMA, European Medicines Agency; MMV, Medicines for Malaria Venture. *In general, 
artemisinin-based combination therapies target all Plasmodium spp. ‡Paediatric formulation to be submitted for approval.
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and rational design (for example, screening of inhib-
itors of P. falciparum dihydroorotate dehydrogenase 
(PfDHODH)); and phenotypic screening175. Phenotypic 
screening has been the most successful approach to date, 
in terms of delivering preclinical candidates and iden-
tifying — through the sequencing of resistant mutants 
— novel molecular targets. However, with advances in 
the understanding of parasite biology and in molecu-
lar biology technology, target-based approaches will  
probably have a substantial role in coming years.

Two combinations — OZ439 (also known as arte-
fenomel) with ferroquine (Sanofi and MMV) and 
KAF156 with lumefantrine (Novartis and MMV) — 
are about to begin phase IIb development to test the 
efficacy of single-dose cure and, in the case of KAF156–
lumefantrine, also 2-day or 3-day cures. OZ439 is a fully 
synthetic peroxide for which sustained plasma exposure 

is achieved by a single oral dose in humans176,177; the 
hope is that it could replace the three independent 
doses required for artemisinin derivatives. Ferroquine 
is a next-generation 4-aminoquinoline without 
cross-resistance to chloroquine, amodiaquine or pip-
eraquine178,179. KAF156 is a novel imidazolopiperazine 
that has an unknown mechanism of action180–182, but its 
resistance marker — P. falciparum cyclic amine resist-
ance locus (pfcarl) — seems to encode a transporter on 
the endoplasmic reticulum membrane of the parasite. 
Interestingly, whereas OZ439 and ferroquine principally 
affect the asexual blood stages, KAF156 also targets both 
the asexual liver stage and the sexual gametocyte stage 
and, therefore, could have an effect on transmission.

Two other compounds, KAE609 (also known as 
cipargamin183,184) and DSM265 (REFS 185–188), are 
poised to begin phase IIb and are awaiting decisions 
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on combination partners. KAE609 is a highly potent 
spiroindolone that provides parasite clearance in 
patients even more rapidly than peroxides; its assumed 
mode of action is the inhibition of PfATP4 (FIG. 3), which 
is encoded by its resistance marker and is a transporter 
on the parasite plasma membrane that regulates Na+ and 
H+ homeostasis. Inhibition of this channel, which was 
identified through the sequencing of resistant mutants, 
increases Na+ concentrations and pH, resulting in para-
site swelling, rigidity and fragility, thereby contributing 
to host parasite clearance in the spleen in addition to 
intrinsic parasite killing. In addition, effects on chol-
esterol levels in the parasite plasma membrane have 
been noted that are also likely to contribute to parasite 
killing by leading to an increased rigidity that results 
in more rapid clearance in vivo189. DSM265 is a novel 

triazolopyrimidine that has both blood-stage and liver- 
stage activity, and that selectively inhibits PfDHODH 
(FIG. 3). It was optimized for drug-like qualities from a 
compound that was identified from a high-throughput 
screen of a small-molecule library186,190. DSM265 main-
tains a serum concentration that is above its minimum 
parasiticidal concentration in humans for 8 days, and 
has shown efficacy in both treatment and chemoprotec-
tion models in human volunteers in phase Ib trials185,188.

Within phase I, new compounds are first assessed 
for safety and pharmacokinetics, and then for efficacy 
against the asexual blood or liver stages of Plasmodium 
spp. using a controlled human malaria infection model 
in healthy volunteers144. This model provides a rapid and 
cost-effective early proof of principle and, by modelling 
the concentration–response correlation, increases the 
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accuracy of dose predictions for further clinical stud-
ies. The 2-aminopyridine MMV(390)048 (also known 
as MMV048 (REFS 191,192)), SJ(557)733 (also known as 
(+)-SJ733 (REFS 57,193)) and P218 (REF. 194) are currently 
progressing through phase I. MMV(390)048 inhibits 
PfPI(4)K (FIG. 3), and this inhibition affects the asexual 
liver and blood stages, as well as the sexual gametocyte 
stage. MMV(390)048 has good exposure in animal mod-
els192, suggesting that it could potentially be used in a sin-
gle dose in combination with another drug. SJ(557)733, 
which is a dihydroisoquinoline, inhibits PfATP4 and is 
an alternative partner that has a completely different 
structure from that of KAE609, and it has excellent pre-
clinical safety and development potential. P218 is cur-
rently being evaluated for testing in controlled human 
malaria infection cohorts.

A further eight compounds are undergoing active 
preclinical development195. Of these compounds, four 
are alternatives to the leading compounds that target 
established mechanisms: the aminopyrazole PA92 (also 
known as PA-21A092 (REF. 196)) and the thiotriazole 
GSK030 (also known as GSK3212030A) both target 
PfATP4; DSM421 (REF. 197) is a triazolopyrimidine 
alternative to DSM265; and UCT943 (also known as 
MMV642943)198 is an alternative to MMV(390)048. 
Three compounds show novel mechanisms of action 
or resistance markers: M5717 (also known as DDD498 
or DDD107498 (REF. 199)) inhibits P. falciparum elon-
gation factor 2 (and, therefore, protein synthesis) and 
has outstanding efficacy against all parasite life-cycle 
stages; MMV253 (also known as AZ13721412)200 is a 
fast-acting triaminopyrimidine with a V-type ATPase 
as resistance marker; and AN13762 (also known as 
AN762) is a novel oxaborole201 with a novel resistance 
marker. All of these compounds have been developed 
through collaborations with MMV.

The eighth compound in active preclinical devel-
opment, led by Jacobus Pharmaceuticals, is JPC3210 
(REF. 202), which is a novel aminocresol that improves 
upon the historical candidate (WR194965) that 
was developed by the Walter Reed Army Institute 
of Research and tested in patients at the time of the 

development of mefloquine in the 1970s. JPC3210 
has an unknown mechanism of action and has potent, 
long-lasting efficacy in preclinical models, suggesting its 
potential to be used in a single dose for both treatment 
and prophylaxis202.

Quality of life
Malaria is one among the diseases of poverty. The 
WHO website states the following: “There is general 
agreement that poverty not only increases the risk of 
ill health and vulnerability of people, it also has seri-
ous implications for the delivery of effective health-care 
such as reduced demand for services, lack of continu-
ity or compliance in medical treatment, and increased 
transmission of infectious diseases” (REF. 203). The 
socioeconomic burden of malaria is enormous, and 
although the disease predominantly affects children, 
it is a serious obstacle to a country’s development 
and economy204. Malaria is responsible for annual 
expenses of billions of euros in some African coun-
tries205. In many endemic areas, each individual suf-
fers multiple episodes of malaria per year, with each 
episode causing a loss of school time for children and 
work time for their parents and guardians. Despite the 
declining trends in malaria morbidity and mortality, 
the figures are still disconcertingly high for a disease 
that is entirely preventable and treatable16.

Malaria also has long-term detrimental effects on 
the non-health-related quality of life of the affected 
population; it intensifies poverty by limiting education 
opportunities, as it leads to absenteeism in schools and 
reduced productivity at work16. The effects of acute 
illness normally drive families to seek urgent attention, 
which may consist of self-medication, if the disease 
is familiar to the household. Yet, even an episode of 
uncomplicated malaria can be potentially fatal, owing 
to a delay in promptly accessing efficacious antimalarial 
drugs. As malaria is so familiar to many households, 
patients — especially children — may be presented 
late for early diagnosis and treatment in health facil-
ities. Late presentation prolongs morbidity, increases 
the risk of severe malaria, and deprives the families 

Table 2 | Drug resistance markers to clinically approved antimalarial agents

Drug P. falciparum resistance marker (gene, 
protein (PlasmoDB gene identifier))

Protein function Geography and resistance 
reports

Artemisinin 
derivatives

k13, Kelch protein K13 (PF3D7_1343700) Scaffold protein that may be involved in 
maintaining phosphatidylinositol-3-phosphate 
levels253

Greater Mekong subregion 
(Southeast Asia)45,270–273

Lumefantrine mdr1, multidrug resistance protein 1 
(PF3D7_0523000)

ATP-dependent drug efflux pump from the 
ABC transporter B family267,274,275

Reports of polymorphisms in 
Uganda and Tanzania, but no 
robust evidence of resistance276–278

Amodiaquine crt, chloroquine-resistance transporter 
(Pf3D7_0709000); and mdr1 (PF3D7_0523000)

Drug metabolite transporter superfamily of 
electrochemical potential-driven transporters279

Africa and Asia277,280

Mefloquine mdr1 (PF3D7_0523000) Drug metabolite transporter superfamily of 
electrochemical potential-driven transporters279

Greater Mekong subregion281–283

Piperaquine plasmepsin 2 (PF3D7_1408000); plasmepsin 3 
(also known as HAP; PF3D7_1408100); and exo, 
putative exonuclease gene (PF3D7_1362500)

Food vacuole histo-aspartic proteases284 and 
putative exonuclease gene168,273

Greater Mekong subregion168,273,285

Pyronaridine None reported Not available No robust reports
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of income through direct expenses and reduced pro-
ductivity. Frequent disease episodes experienced in the 
endemic areas as well as their possible complications 
can negatively affect child growth and nutrition, short-
ening the lives of children and family members. The 
neurological consequences can affect a child’s ability 
to learn and become a self-reliant adult206–208, as they 
often occur during an important brain growth phase, 
when brain areas involved in higher learning (such as 
planning, decision-making, self-awareness and social 
sensitivity) mature. Cognitive deficits occurring dur-
ing the early education years affect the entire family, 
as they impair the ability of the child to contribute to 
the well-being of the family as they grow and put addi-
tional strain on the parents, who may sometimes have 
to care for a  substantially disabled child and, later, a 
disabled adult209.

Outlook
The agenda set by the WHO aims for malaria inci-
dence and mortality to decrease by 90% over the next 
15 years, with increasing numbers of countries that 
eliminate the disease210. Even if we achieve the ambi-
tious goals set by the WHO, there will still be a child 
dying of malaria every 10 minutes in 2030. The ACTs 
are extraordinarily effective, and much of the disease 
burden could be reduced by the complete deployment 
and availability of these medicines. There are now  
two approved ACTs that are specifically designed 
(taste-masked and sweetened) for paediatric use.

However, the emergence of drug-resistant Plasmo
dium spp. and insecticide-resistant mosquitoes is a 
major concern. The first clinical reports of artemisinin 
resistance came from the Thai–Cambodian border 
region in the mid-2000s211. So far, resistant strains have 
not spread to Africa, and the severity of the malaria 
caused by artemisinin-resistant parasites is not differ-
ent from that of disease caused by wild-type strains. 
However, if artemisinin derivatives became ineffective, 
no alternative first-line treatments would be available, 
as new therapies are still only in phase II clinical trials, 
and their safety and efficacy will need to be effectively 
assessed in the field before they can be deployed for 
widespread clinical use.

Diagnostics
Future diagnostics should address two main issues. 
First, new diagnostic tests would ideally be non- invasive 
and not require a blood sample. Many approaches have 
been piloted, including parasite antigen detection in 
saliva212 or urine213, the detection of specific volatile 
chemicals in breath214, and direct non-invasive measure-
ments of iron-rich haemozoin in skin blood vessels215. 
Second, diagnostic tests should be able to detect drug- 
resistant strains directly in the point-of-care setting, 
rather than in sentinel sites, to provide better treatment 
and generate more-detailed epidemiological maps216. 
A next-generation amplicon-sequencing method suit-
able for use in endemic countries would enable the 
high-throughput detection of genetic mutations in six 
P. falciparum genes that are associated with resistance 

to antimalarial drugs, including ACTs,  chloroquine and 
sulfadoxine–pyrimethamine217.

Malaria challenges
In addition to the length of the process of discovering 
and developing new drugs, insecticides and vaccines, 
in malaria there is the hurdle of the delivery of these 
new compounds, which first need to obtain approval 
from all local regulatory authorities. There is a trend 
for harmonization of the approval requirements among 
different authorities, with an initiative involving several 
regional African organizations, for example, to review 
data on behalf of many countries, similarly to the EMA 
reviewing files on behalf of all of the European Union 
countries. These events are paving the way to shorten 
the time from the end of clinical studies to the day of 
large-scale deployment, when affected  populations will 
start to reap the benefits.

The move towards elimination and eradication
High-content cellular assays have become available to 
test inhibitors of transmission and compounds that tar-
get hypnozoites218,219. Discovery efforts for treatment and 
chemoprotection combinations conform to the malaria 
Target Product Profiles — a planning tool for therapeutic 
candidates that is based on FDA guidelines — to ensure 
that what is delivered has clinical relevance. The MMV 
has defined220 and updated221 Target Candidate Profiles 
(TCPs), which define the attributes that are required for 
the ideal medicines and have proven invaluable in guid-
ing single-molecule optimization and decision-making.

The current focus is moving beyond TCP1 (which 
includes molecules that clear asexual blood-stage 
parasit aemia); the goal is to deliver compounds that do 
not simply treat patients and control symptoms but that 
also have biological activity that disrupts the life cycle 
of the parasite and hence break the transmission cycle, 
a step that is necessary in the move towards elimina-
tion. Particular areas of interest are anti-relapse agents 
for P. vivax malaria (TCP3; compounds that target 
hypnozoites), compounds that kill hepatic schizonts 
(TCP4) and protect against the onset of symptoms, 
and gametocytocidal compounds to block transmis-
sion (TCP5). Future projects include work on long- 
lasting endectocides (TCP6), such as ivermectin107. 
The MMV Discovery Portfolio also includes alter-
native compounds to the clinical frontrunners, mole-
cules with new mechanisms of action (which target, 
for example, N-myristoyltransferase222, coenzyme A 
biosynthesis223, phenylalanyl tRNA synthetase224, pro-
lyl225 tRNA synthetase, plasmepsin V226 and the Qi site 
of cytochrome bc1 (REF. 227)) and compounds that seem 
to be resistance-proof (at least in vitro).

In conclusion, while much progress has been made 
towards reducing the burden of malaria, much work 
remains to be done if these gains are to bring lasting 
relief to those living under the threat of infection. 
Without a continued focus on developing new anti-
malarials and new approaches for diagnosis and vector 
control, malaria will continue to exert an unacceptable 
toll on people living in disease endemic areas.
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